Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, University of Giessen, 35385 Giessen, Germany.
Dis Model Mech. 2012 Jan;5(1):125-40. doi: 10.1242/dmm.007708. Epub 2011 Oct 4.
Impaired neuronal migration and cell death are commonly observed in patients with peroxisomal biogenesis disorders (PBDs), and in mouse models of this diseases. In Pex11β-deficient mice, we observed that the deletion of a single allele of the Pex11β gene (Pex11β(+/-) heterozygous mice) caused cell death in primary neuronal cultures prepared from the neocortex and cerebellum, although to a lesser extent as compared with the homozygous-null animals (Pex11β(-/-) mice). In corresponding brain sections, cell death was rare, but differences between the genotypes were similar to those found in vitro. Because PEX11β has been implicated in peroxisomal proliferation, we searched for alterations in peroxisomal abundance in the brain of heterozygous and homozygous Pex11β-null mice compared with wild-type animals. Deletion of one allele of the Pex11β gene slightly increased the abundance of peroxisomes, whereas the deletion of both alleles caused a 30% reduction in peroxisome number. The size of the peroxisomal compartment did not correlate with neuronal death. Similar to cell death, neuronal development was delayed in Pex11β(+/-) mice, and to a further extent in Pex11β(-/-) mice, as measured by a reduced mRNA and protein level of synaptophysin and a reduced protein level of the mature isoform of MAP2. Moreover, a gradual increase in oxidative stress was found in brain sections and primary neuronal cultures from wild-type to heterozygous to homozygous Pex11β-deficient mice. SOD2 was upregulated in neurons from Pex11β(+/-) mice, but not from Pex11β(-/-) animals, whereas the level of catalase remained unchanged in neurons from Pex11β(+/-) mice and was reduced in those from Pex11β(-/-) mice, suggesting a partial compensation of oxidative stress in the heterozygotes, but a failure thereof in the homozygous Pex11β(-/-) brain. In conclusion, we report the alterations in the brain caused by the deletion of a single allele of the Pex11β gene. Our data might lead to the reconsideration of the clinical treatment of PBDs and the common way of using knockout mouse models for studying autosomal recessive diseases.
神经元迁移和细胞死亡受损在过氧化物酶体生物发生障碍 (PBD) 患者和该疾病的小鼠模型中很常见。在 Pex11β 缺陷型小鼠中,我们观察到 Pex11β 基因的单个等位基因缺失 (Pex11β(+/-)杂合子小鼠) 导致皮质和小脑原代神经元培养物中的细胞死亡,尽管与纯合子缺失动物 (Pex11β(-/-) 小鼠) 相比程度较轻。在相应的脑切片中,细胞死亡很少,但基因型之间的差异与体外发现的相似。因为 PEX11β 与过氧化物酶体增殖有关,所以我们在与野生型动物相比时,在杂合和纯合 Pex11β 缺失小鼠的脑中寻找过氧化物酶体丰度的变化。Pex11β 基因的一个等位基因缺失略微增加了过氧化物酶体的丰度,而两个等位基因的缺失导致过氧化物酶体数量减少 30%。过氧化物酶体区室的大小与神经元死亡无关。与细胞死亡类似,Pex11β(+/-) 小鼠的神经元发育延迟,在 Pex11β(-/-) 小鼠中进一步延迟,这可通过突触小体蛋白的 mRNA 和蛋白水平降低以及成熟型 MAP2 蛋白水平降低来衡量。此外,在从野生型到杂合子到纯合子 Pex11β 缺陷型小鼠的脑切片和原代神经元培养物中发现氧化应激逐渐增加。SOD2 在 Pex11β(+/-) 小鼠的神经元中上调,但在 Pex11β(-/-) 动物中没有上调,而 Pex11β(+/-) 小鼠神经元中的过氧化氢酶水平保持不变,在 Pex11β(-/-) 小鼠中减少,表明杂合子中氧化应激的部分代偿,但纯合子 Pex11β(-/-) 大脑中代偿失败。总之,我们报告了 Pex11β 基因单个等位基因缺失引起的大脑变化。我们的数据可能会导致重新考虑 PBD 的临床治疗方法和使用 knockout 小鼠模型研究常染色体隐性疾病的常见方法。