Suppr超能文献

PEX13 缺陷小鼠脑作为 Zellweger 综合征模型:小脑发育异常、反应性神经胶质增生和氧化应激。

PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress.

机构信息

Eskitis Institute for Cell and Molecular Therapies, and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, Queensland 4111, Australia.

出版信息

Dis Model Mech. 2011 Jan;4(1):104-19. doi: 10.1242/dmm.004622. Epub 2010 Oct 19.

Abstract

Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology.

摘要

小脑发育迟缓是 Zellweger 综合征(ZS)的一个标志,ZS 是一种严重的新生儿神经退行性疾病。ZS 是由 PEX 基因(如 PEX13)的突变引起的,PEX13 编码一种将蛋白质导入过氧化物酶体所需的蛋白质。ZS 发病机制的分子基础尚不清楚。我们创建了一种条件性小鼠突变体,其大脑中 PEX13 表达受到限制,表现出小脑形态缺陷。PEX13 大脑突变体存活到出生后时期,大多数在 35 天内死亡,并且存活率与窝大小和断奶体重呈负相关。对突变体大脑中过氧化物酶体代谢的影响是混合的:质体含量降低,但极长链脂肪酸正常。PEX13 大脑突变体表现出反射和运动发育缺陷,与小脑裂和皮质层形成、颗粒细胞迁移和浦肯野细胞层发育受损相关。星形胶质细胞增生和小胶质细胞增生是突变小脑的突出特征。在分子水平上,来自 E19 PEX13 基因缺失小鼠的培养小脑神经元表现出高水平的活性氧和线粒体超氧化物歧化酶-2(MnSOD),并表现出增强的细胞凋亡以及线粒体功能障碍。PEX13 大脑突变体在小脑中显示出 MnSOD 水平升高。我们的研究结果表明,PEX13 缺乏导致线粒体介导的氧化应激、神经元细胞死亡和小脑发育障碍。因此,PEX13 缺陷型小鼠为研究 ZS 小脑病理的分子基础和治疗提供了有价值的动物模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd88/3014351/fb3c95391b6f/DMM004622F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验