Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
NMR Biomed. 2012 Apr;25(4):674-84. doi: 10.1002/nbm.1784. Epub 2011 Sep 23.
Dynamic contrast-enhanced MRI (DCE-MRI) is widely accepted for the evaluation of cancer. DCE-MRI, a noninvasive measurement of microvessel permeability, blood volume and blood flow, is extremely useful for understanding disease mechanisms and monitoring therapeutic responses in preclinical research. For the accurate quantification of pharmacokinetic parameters using DCE-MRI, determination of the arterial input function (AIF) from a large arterial vessel near the tumor is required. However, a manual determination of AIF in mouse MR images is often difficult because of the small spatial dimensions or the location of the tumor. In this study, we propose an algorithm for the automatic detection of AIF from mouse DCE-MR images using Kendall's coefficient of concordance. The proposed method was tested with computer simulations and then applied to tumor-bearing mice (n = 8). Results from computer simulations showed that the proposed algorithm is capable of categorizing simulated AIF signals according to their noise levels. We found that the resulting pharmacokinetic parameters computed from our method were comparable with those from the manual determination of AIF, with acceptable differences in K(trans) (5.14 ± 3.60%), v(e) (6.02 ± 3.22%), v(p) (5.10 ± 7.05%) and k(ep) (5.38 ± 4.72%). The results of the current study suggest the usefulness of an automatically defined AIF using Kendall's coefficient of concordance for quantitative DCE-MRI in mouse models for cancer evaluation.
动态对比增强磁共振成像(DCE-MRI)广泛应用于癌症评估。DCE-MRI 是一种测量微血管通透性、血容量和血流的非侵入性方法,对于理解疾病机制和监测临床前研究中的治疗反应非常有用。为了使用 DCE-MRI 准确量化药代动力学参数,需要从肿瘤附近的大动脉确定动脉输入函数(AIF)。然而,由于肿瘤的空间尺寸较小或位置,手动确定小鼠 MR 图像中的 AIF 通常很困难。在这项研究中,我们提出了一种使用 Kendall 协和系数自动检测小鼠 DCE-MR 图像中 AIF 的算法。该方法通过计算机模拟进行了测试,然后应用于荷瘤小鼠(n=8)。计算机模拟结果表明,该算法能够根据噪声水平对模拟的 AIF 信号进行分类。我们发现,从我们的方法计算得到的药代动力学参数与手动确定 AIF 的结果相当,Ktrans(5.14±3.60%)、vE(6.02±3.22%)、vP(5.10±7.05%)和 kep(5.38±4.72%)的差异可接受。本研究结果表明,使用 Kendall 协和系数自动定义 AIF 对癌症评估的小鼠模型的定量 DCE-MRI 具有一定的实用性。