Lehmann Paul V, Zhang Wenji
Cellular Technology Limited, Shaker Heights, OH, USA.
Methods Mol Biol. 2012;792:3-23. doi: 10.1007/978-1-61779-325-7_1.
The T cell system plays an essential role in infections, allergic reactions, tumor and transplant rejection, as well as autoimmune diseases. It does so by the selective engagement of different antigen-specific effector cell lineages that differentially secrete cytokines and other effector molecules. These T cell subsets may or may not have cytolytic activity, can preferentially migrate to different tissues, and display variable capabilities to expand clonally. The quest of T cell immune diagnostics is to understand which specific effector function and T cell lineage is associated with a given clinical outcome, be it positive or adverse. No single assay can measure all of the relevant parameters. In this chapter, we review the unique contributions that ELISPOT assays can make toward understanding T cell-mediated immunity. ELISPOT assays have an unsurpassed sensitivity in detecting low frequency antigen-specific T cells that secrete effector molecules, including granzyme and perforin. They provide robust, highly reproducible data - even by first time users. Because ELISPOT assays require roughly tenfold less cell material than flow cytometry, ELISPOT is ideally suited for all measurements requiring parallel testing under multiple conditions. These include defining (a) T cell reactivity to individual peptides of extensive libraries, thereby establishing the fine-specificity of the response, and determinant mapping; (b) reactivity to different concentrations of the antigen in serial dilutions to measure the avidity of the T cell response; or (c) different secretory products released by T cells which define their respective effector lineage/functions. Further, because T cells survive ELISPOT assays unaffected, they can be retested for the acquisition of additional information in follow-up assays. These strengths of ELISPOT assays the weaknesses of flow cytometry-based measurements. Thus, the two assays systems compliment each other in the quest to understand T cell-mediated immunity in vivo.
T细胞系统在感染、过敏反应、肿瘤和移植排斥以及自身免疫性疾病中发挥着至关重要的作用。它通过选择性地激活不同的抗原特异性效应细胞谱系来实现这一点,这些谱系会差异性地分泌细胞因子和其他效应分子。这些T细胞亚群可能具有或不具有细胞溶解活性,能够优先迁移到不同组织,并表现出不同的克隆扩增能力。T细胞免疫诊断的目的是了解哪种特定的效应功能和T细胞谱系与给定的临床结果相关,无论是阳性还是阴性。没有一种检测方法能够测量所有相关参数。在本章中,我们将回顾ELISPOT检测在理解T细胞介导的免疫方面所能做出的独特贡献。ELISPOT检测在检测分泌效应分子(包括颗粒酶和穿孔素)的低频抗原特异性T细胞方面具有无与伦比的灵敏度。它们提供可靠、高度可重复的数据——即使是初次使用者也能做到。由于ELISPOT检测所需的细胞材料比流式细胞术少大约十倍,因此ELISPOT非常适合所有需要在多种条件下进行平行检测的测量。这些测量包括:(a) T细胞对大量文库中单个肽段的反应性,从而确定反应的精细特异性和决定簇定位;(b) 对系列稀释中不同浓度抗原的反应性,以测量T细胞反应的亲和力;或(c) T细胞释放的不同分泌产物,这些产物定义了它们各自的效应谱系/功能。此外,由于T细胞在ELISPOT检测后仍能存活且不受影响,因此可以在后续检测中对其进行重新检测以获取更多信息。ELISPOT检测的这些优势弥补了基于流式细胞术测量的不足。因此,在理解体内T细胞介导的免疫方面,这两种检测系统相互补充。