Suppr超能文献

裂谷热病毒非扩散株的构建。

Creation of a nonspreading Rift Valley fever virus.

机构信息

Department of Virology, Central Veterinary Institute of Wageningen University Research Centre, Edelhertweg 15, 8219 PH Lelystad, The Netherlands.

出版信息

J Virol. 2011 Dec;85(23):12622-30. doi: 10.1128/JVI.00841-11. Epub 2011 Sep 28.

Abstract

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic bunyavirus of the genus Phlebovirus and a serious human and veterinary pathogen. RVFV contains a three-segmented RNA genome, which is comprised of the large (L), medium (M), and small (S) segments. The proteins that are essential for genome replication are encoded by the L and S segments, whereas the structural glycoproteins are encoded by the M segment. We have produced BHK replicon cell lines (BHK-Rep) that maintain replicating L and S genome segments. Transfection of BHK-Rep cells with a plasmid encoding the structural glycoproteins results in the efficient production of RVFV replicon particles (RRPs). To facilitate monitoring of infection, the NSs gene was replaced with an enhanced green fluorescent protein gene. RRPs are infectious for both mammalian and insect cells but are incapable of autonomous spreading, rendering their application outside biosafety containment completely safe. We demonstrate that a single intramuscular vaccination with RRPs protects mice from a lethal dose of RVFV and show that RRPs can be used for rapid virus neutralization tests that do not require biocontainment facilities. The methods reported here will greatly facilitate vaccine and drug development as well as fundamental studies on RVFV biology. Moreover, it may be possible to develop similar systems for other members of the bunyavirus family as well.

摘要

裂谷热病毒(RVFV)是一种虫媒传播的布尼亚病毒属正黏液病毒,是一种严重的人类和兽医病原体。RVFV 包含一个三片段的 RNA 基因组,由大(L)、中(M)和小(S)片段组成。对于基因组复制至关重要的蛋白质由 L 和 S 片段编码,而结构糖蛋白则由 M 片段编码。我们已经生产出维持复制 L 和 S 基因组片段的 BHK 复制子细胞系(BHK-Rep)。用编码结构糖蛋白的质粒转染 BHK-Rep 细胞会导致 RVFV 复制子颗粒(RRP)的有效产生。为了便于监测感染,NSs 基因被增强型绿色荧光蛋白基因取代。RRP 对哺乳动物和昆虫细胞都具有感染性,但不能自主传播,因此在生物安全控制之外的应用是完全安全的。我们证明,单次肌肉内接种 RRP 可保护小鼠免受 RVFV 的致死剂量感染,并表明 RRP 可用于不需要生物安全设施的快速病毒中和试验。这里报道的方法将极大地促进疫苗和药物的开发以及对 RVFV 生物学的基础研究。此外,可能还可以为布尼亚病毒科的其他成员开发类似的系统。

相似文献

1
Creation of a nonspreading Rift Valley fever virus.
J Virol. 2011 Dec;85(23):12622-30. doi: 10.1128/JVI.00841-11. Epub 2011 Sep 28.
2
Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging.
J Virol. 2014 Sep;88(18):10883-93. doi: 10.1128/JVI.00961-14. Epub 2014 Jul 9.
4
Paramyxovirus-based production of Rift Valley fever virus replicon particles.
J Gen Virol. 2014 Dec;95(Pt 12):2638-2648. doi: 10.1099/vir.0.067660-0. Epub 2014 Sep 10.
5
Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors.
Virology. 2006;356(1-2):155-64. doi: 10.1016/j.virol.2006.07.035. Epub 2006 Aug 30.
9
An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus.
Epidemiol Infect. 2009 Sep;137(9):1309-18. doi: 10.1017/S0950268808001696. Epub 2009 Jan 27.

引用本文的文献

2
Quantifying Rift Valley fever virus transmission efficiency in a lamb-mosquito-lamb model.
Front Cell Infect Microbiol. 2023 Dec 18;13:1206089. doi: 10.3389/fcimb.2023.1206089. eCollection 2023.
4
Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains.
Annu Rev Virol. 2023 Sep 29;10(1):261-282. doi: 10.1146/annurev-virology-111821-120445.
5
Viral Replicon Systems and Their Biosafety Aspects.
Appl Biosaf. 2023 Jun 1;28(2):102-122. doi: 10.1089/apb.2022.0037. Epub 2023 Jun 5.
6
Pseudotyped Viruses for Phlebovirus.
Adv Exp Med Biol. 2023;1407:253-264. doi: 10.1007/978-981-99-0113-5_13.
7
Incomplete bunyavirus particles can cooperatively support virus infection and spread.
PLoS Biol. 2022 Nov 15;20(11):e3001870. doi: 10.1371/journal.pbio.3001870. eCollection 2022 Nov.
8
An Overview of Rift Valley Fever Vaccine Development Strategies.
Vaccines (Basel). 2022 Oct 25;10(11):1794. doi: 10.3390/vaccines10111794.
10
Safety and immunogenicity of four-segmented Rift Valley fever virus in the common marmoset.
NPJ Vaccines. 2022 May 18;7(1):54. doi: 10.1038/s41541-022-00476-y.

本文引用的文献

2
Rift valley fever: recent insights into pathogenesis and prevention.
J Virol. 2011 Jul;85(13):6098-105. doi: 10.1128/JVI.02641-10. Epub 2011 Mar 30.
3
Efficient cellular release of Rift Valley fever virus requires genomic RNA.
PLoS One. 2011 Mar 21;6(3):e18070. doi: 10.1371/journal.pone.0018070.
4
Fever with thrombocytopenia associated with a novel bunyavirus in China.
N Engl J Med. 2011 Apr 21;364(16):1523-32. doi: 10.1056/NEJMoa1010095. Epub 2011 Mar 16.
6
Mechanism of tripartite RNA genome packaging in Rift Valley fever virus.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):804-9. doi: 10.1073/pnas.1013155108. Epub 2010 Dec 27.
8
Virus-like particles expressing the nucleocapsid gene as an efficient vaccine against Rift Valley fever virus.
Vector Borne Zoonotic Dis. 2010 Oct;10(7):701-3. doi: 10.1089/vbz.2009.0248.
9
The historical and recent impact of Rift Valley fever in Africa.
Am J Trop Med Hyg. 2010 Aug;83(2 Suppl):73-4. doi: 10.4269/ajtmh.2010.83s2a02.
10
Novel suspension cell-based vaccine production systems for Rift Valley fever virus-like particles.
J Virol Methods. 2010 Nov;169(2):259-68. doi: 10.1016/j.jviromet.2010.07.015. Epub 2010 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验