Suppr超能文献

具有四段式基因组的裂谷热病毒的构建揭示了布尼亚病毒基因组包装的灵活性。

Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging.

作者信息

Wichgers Schreur Paul J, Oreshkova Nadia, Moormann Rob J M, Kortekaas Jeroen

机构信息

Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands

Department of Virology, Central Veterinary Institute, part of Wageningen University and Research Centre, Lelystad, The Netherlands Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

出版信息

J Virol. 2014 Sep;88(18):10883-93. doi: 10.1128/JVI.00961-14. Epub 2014 Jul 9.

Abstract

UNLABELLED

Bunyavirus genomes comprise a small (S), a medium (M), and a large (L) RNA segment of negative polarity. Although the untranslated regions have been shown to comprise signals required for transcription, replication, and encapsidation, the mechanisms that drive the packaging of at least one S, M, and L segment into a single virion to generate infectious virus are largely unknown. One of the most important members of the Bunyaviridae family that causes devastating disease in ruminants and occasionally humans is the Rift Valley fever virus (RVFV). We studied the flexibility of RVFV genome packaging by splitting the glycoprotein precursor gene, encoding the (NSm)GnGc polyprotein, into two individual genes encoding either (NSm)Gn or Gc. Using reverse genetics, six viruses with a segmented glycoprotein precursor gene were rescued, varying from a virus comprising two S-type segments in the absence of an M-type segment to a virus consisting of four segments (RVFV-4s), of which three are M-type. Despite that all virus variants were able to grow in mammalian cell lines, they were unable to spread efficiently in cells of mosquito origin. Moreover, in vivo studies demonstrated that RVFV-4s is unable to cause disseminated infection and disease in mice, even in the presence of the main virulence factor NSs, but induced a protective immune response against a lethal challenge with wild-type virus. In summary, splitting bunyavirus glycoprotein precursor genes provides new opportunities to study bunyavirus genome packaging and offers new methods to develop next-generation live-attenuated bunyavirus vaccines.

IMPORTANCE

Rift Valley fever virus (RVFV) causes devastating disease in ruminants and occasionally humans. Virions capable of productive infection comprise at least one copy of the small (S), medium (M), and large (L) RNA genome segments. The M segment encodes a glycoprotein precursor (GPC) protein that is cotranslationally cleaved into Gn and Gc, which are required for virus entry and fusion. We studied the flexibility of RVFV genome packaging and developed experimental live-attenuated vaccines by applying a unique strategy based on the splitting of the GnGc open reading frame. Several RVFV variants, varying from viruses comprising two S-type segments to viruses consisting of four segments (RVFV-4s), of which three are M-type, could be rescued and were shown to induce a rapid protective immune response. Altogether, the segmentation of bunyavirus GPCs provides a new method for studying bunyavirus genome packaging and facilitates the development of novel live-attenuated bunyavirus vaccines.

摘要

未标记

布尼亚病毒基因组由一个小(S)、一个中(M)和一个大(L)的负链RNA片段组成。尽管非编码区已被证明包含转录、复制和衣壳化所需的信号,但驱动至少一个S、M和L片段包装到单个病毒粒子中以产生感染性病毒的机制在很大程度上尚不清楚。裂谷热病毒(RVFV)是布尼亚病毒科最重要的成员之一,可在反刍动物中引起毁灭性疾病,偶尔也会感染人类。我们通过将编码(NSm)GnGc多聚蛋白的糖蛋白前体基因拆分为两个分别编码(NSm)Gn或Gc的单独基因,研究了RVFV基因组包装的灵活性。利用反向遗传学技术,拯救出了六种具有分段糖蛋白前体基因的病毒,从在没有M型片段的情况下包含两个S型片段的病毒到由四个片段组成的病毒(RVFV-4s),其中三个是M型。尽管所有病毒变体都能够在哺乳动物细胞系中生长,但它们无法在蚊子来源的细胞中有效传播。此外,体内研究表明,即使存在主要毒力因子NSs,RVFV-4s也无法在小鼠中引起播散性感染和疾病,但能诱导针对野生型病毒致死性攻击的保护性免疫反应。总之,拆分布尼亚病毒糖蛋白前体基因提供了研究布尼亚病毒基因组包装的新机会,并为开发下一代减毒活布尼亚病毒疫苗提供了新方法。

重要性

裂谷热病毒(RVFV)可在反刍动物中引起毁灭性疾病,偶尔也会感染人类。能够产生有效感染的病毒粒子包含小(S)、中(M)和大(L)RNA基因组片段的至少一个拷贝。M片段编码一种糖蛋白前体(GPC)蛋白,该蛋白在共翻译过程中被切割成Gn和Gc,这是病毒进入和融合所必需的。我们研究了RVFV基因组包装的灵活性,并通过应用基于拆分GnGc开放阅读框的独特策略开发了实验性减毒活疫苗。拯救出了几种RVFV变体,从包含两个S型片段的病毒到由四个片段组成的病毒(RVFV-4s),其中三个是M型,并显示它们能诱导快速的保护性免疫反应。总之,布尼亚病毒GPC的分段为研究布尼亚病毒基因组包装提供了一种新方法,并促进了新型减毒活布尼亚病毒疫苗的开发。

相似文献

1
Creation of Rift Valley fever viruses with four-segmented genomes reveals flexibility in bunyavirus genome packaging.
J Virol. 2014 Sep;88(18):10883-93. doi: 10.1128/JVI.00961-14. Epub 2014 Jul 9.
3
Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.
Vaccine. 2015 Mar 17;33(12):1459-64. doi: 10.1016/j.vaccine.2015.01.077. Epub 2015 Feb 7.
4
Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.
PLoS Pathog. 2016 Aug 22;12(8):e1005800. doi: 10.1371/journal.ppat.1005800. eCollection 2016 Aug.
5
Four-segmented Rift Valley fever virus-based vaccines can be applied safely in ewes during pregnancy.
Vaccine. 2017 May 25;35(23):3123-3128. doi: 10.1016/j.vaccine.2017.04.024. Epub 2017 Apr 27.
8
Safety and efficacy of four-segmented Rift Valley fever virus in young sheep, goats and cattle.
NPJ Vaccines. 2020 Jul 24;5(1):65. doi: 10.1038/s41541-020-00212-4. eCollection 2020.
9
Mechanistic insight into the efficient packaging of antigenomic S RNA into Rift Valley fever virus particles.
Front Cell Infect Microbiol. 2023 Feb 16;13:1132757. doi: 10.3389/fcimb.2023.1132757. eCollection 2023.
10
Creation of a recombinant Rift Valley fever virus with a two-segmented genome.
J Virol. 2011 Oct;85(19):10310-8. doi: 10.1128/JVI.05252-11. Epub 2011 Jul 27.

引用本文的文献

2
A group of segmented viruses contains genome segments sharing homology with multiple viral taxa.
J Virol. 2025 Jul 22;99(7):e0033225. doi: 10.1128/jvi.00332-25. Epub 2025 Jun 4.
5
Novel replication-competent reporter-expressing Rift Valley fever viruses for molecular studies.
J Virol. 2025 Jan 31;99(1):e0178224. doi: 10.1128/jvi.01782-24. Epub 2024 Dec 12.
6
Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control.
Signal Transduct Target Ther. 2024 Sep 11;9(1):223. doi: 10.1038/s41392-024-01917-x.
7
Immune correlates of protection of the four-segmented Rift Valley fever virus candidate vaccine in mice.
Emerg Microbes Infect. 2024 Dec;13(1):2373313. doi: 10.1080/22221751.2024.2373313. Epub 2024 Jul 10.
8
The genome of a bunyavirus cannot be defined at the level of the viral particle but only at the scale of the viral population.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2309412120. doi: 10.1073/pnas.2309412120. Epub 2023 Nov 20.
10
Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses.
Pathogens. 2023 Sep 19;12(9):1174. doi: 10.3390/pathogens12091174.

本文引用的文献

3
Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.
PLoS One. 2014 Jan 28;9(1):e87385. doi: 10.1371/journal.pone.0087385. eCollection 2014.
4
Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis.
Virology. 2014 Jan 5;448:1-14. doi: 10.1016/j.virol.2013.09.023. Epub 2013 Oct 16.
5
A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs.
PLoS One. 2013 Oct 22;8(10):e77461. doi: 10.1371/journal.pone.0077461. eCollection 2013.
7
Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein.
J Virol. 2012 Dec;86(24):13642-52. doi: 10.1128/JVI.01973-12. Epub 2012 Oct 3.
8
One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9101-6. doi: 10.1073/pnas.1206069109. Epub 2012 Apr 30.
9
Innate immune response to Rift Valley fever virus in goats.
PLoS Negl Trop Dis. 2012;6(4):e1623. doi: 10.1371/journal.pntd.0001623. Epub 2012 Apr 24.
10
Efficacy of three candidate Rift Valley fever vaccines in sheep.
Vaccine. 2012 May 14;30(23):3423-9. doi: 10.1016/j.vaccine.2012.03.027. Epub 2012 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验