Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
Biochimie. 2012 Mar;94(3):916-9. doi: 10.1016/j.biochi.2011.09.011. Epub 2011 Sep 22.
Microtubule dynamic instability is tightly regulated by coordinated action of stabilizing and destabilizing microtubule associated proteins. Among the stabilizing proteins, tau plays a pivotal role in both physiological and pathological processes. Nevertheless, the detailed mechanism of tau-tubulin interaction is still subject to controversy. In this report, we studied for the first time tau binding to tubulin by a direct thermodynamic method in the absence of any tubulin polymerization cofactors that could influence this process. Isothermal titration calorimetry enabled us to evidence two types of tau-tubulin binding modes: one corresponding to a high affinity binding site with a tau:tubulin stoichiometry of 0.2 and the other one to a low affinity binding site with a stoichiometry of 0.8. The same stoichiometries were obtained at all temperatures tested (10-37°C), indicating that the mechanism of interaction does not depend on the type of tubulin polymer triggered upon tau binding. These findings allowed us to get new insights into the topology of tau on microtubules.
微管动态不稳定性受稳定和不稳定微管相关蛋白的协调作用严格调控。在稳定蛋白中,tau 在生理和病理过程中都起着关键作用。然而,tau-微管相互作用的详细机制仍存在争议。在本报告中,我们首次通过直接热力学方法研究了无任何可能影响此过程的微管聚合辅助因子存在的情况下,tau 与微管的结合。等温滴定量热法使我们能够证明两种类型的 tau-微管结合模式:一种对应于高亲和力结合位点,tau:微管的化学计量比为 0.2,另一种对应于低亲和力结合位点,化学计量比为 0.8。在所有测试的温度(10-37°C)下都获得了相同的化学计量比,这表明相互作用的机制不依赖于 tau 结合引发的微管聚合物的类型。这些发现使我们能够深入了解 tau 在微管上的拓扑结构。