Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, D-80539 München, Germany.
Integr Biol (Camb). 2011 Nov;3(11):1095-101. doi: 10.1039/c1ib00035g. Epub 2011 Sep 29.
The development of high-throughput live cell imaging is currently limited by the capabilities of image analysis. Software is required to generate single cell time courses from large data sets of time-lapse movies and to follow properties of individual cells. Automated cell tracking faces notorious problems associated with cell division, high cell density and cell mobility. In particular, a large number of cell traces are discarded in experiments with extended observation times due to image analysis ambiguities. Here we develop an algorithm for robust tracking based on cost matrices from multiple cell parameters such as object size, position or texture. Singularities in cost indicate tracking conflicts, which can be categorized into event classes such as cell division, lysis or overlap of cells. We demonstrate that multiple parameter tracking (MPT) generates single cell fluorescence time traces more reliably than algorithms based on position tracking only. Context-sensitive automatic evaluation and event management increase the yield of continuous and correctly assigned time traces by 27%.
高通量活细胞成像的发展目前受到图像分析能力的限制。需要软件从大量延时电影的数据集生成单细胞时程,并跟踪单个细胞的特性。自动细胞跟踪面临着与细胞分裂、高细胞密度和细胞迁移相关的棘手问题。特别是,在观察时间延长的实验中,由于图像分析的不确定性,大量细胞轨迹被丢弃。在这里,我们开发了一种基于多个细胞参数(如物体大小、位置或纹理)的代价矩阵的稳健跟踪算法。代价中的奇异点表示跟踪冲突,可以将其分类为事件类,如细胞分裂、细胞溶解或细胞重叠。我们证明,与仅基于位置跟踪的算法相比,多参数跟踪(MPT)更可靠地生成单细胞荧光时间轨迹。上下文敏感的自动评估和事件管理将连续和正确分配的时间轨迹的产量提高了 27%。