School of Biological and Behavioural Sciences, Queen Mary University of London , London, UK.
Department of Informatics, King's College London , London, UK.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202111094. Epub 2023 Mar 2.
Time-lapse microscopy movies have transformed the study of subcellular dynamics. However, manual analysis of movies can introduce bias and variability, obscuring important insights. While automation can overcome such limitations, spatial and temporal discontinuities in time-lapse movies render methods such as 3D object segmentation and tracking difficult. Here, we present SpinX, a framework for reconstructing gaps between successive image frames by combining deep learning and mathematical object modeling. By incorporating expert feedback through selective annotations, SpinX identifies subcellular structures, despite confounding neighbor-cell information, non-uniform illumination, and variable fluorophore marker intensities. The automation and continuity introduced here allows the precise 3D tracking and analysis of spindle movements with respect to the cell cortex for the first time. We demonstrate the utility of SpinX using distinct spindle markers, cell lines, microscopes, and drug treatments. In summary, SpinX provides an exciting opportunity to study spindle dynamics in a sophisticated way, creating a framework for step changes in studies using time-lapse microscopy.
延时显微镜电影改变了亚细胞动力学的研究方式。然而,电影的手动分析可能会引入偏差和可变性,从而掩盖重要的见解。虽然自动化可以克服这些限制,但延时电影中的空间和时间不连续性使得 3D 物体分割和跟踪等方法变得困难。在这里,我们提出了 SpinX,这是一种通过结合深度学习和数学对象建模来重建连续图像帧之间间隙的框架。通过通过选择性注释纳入专家反馈,SpinX 可以识别亚细胞结构,即使存在相邻细胞信息、不均匀照明和可变荧光标记物强度等干扰。这里引入的自动化和连续性使得第一次能够精确地进行与细胞皮层有关的纺锤体运动的 3D 跟踪和分析。我们使用不同的纺锤体标记物、细胞系、显微镜和药物处理来证明 SpinX 的实用性。总之,SpinX 为以复杂的方式研究纺锤体动力学提供了一个令人兴奋的机会,为使用延时显微镜的研究带来了框架上的突破。