Suppr超能文献

局部构象灵活性为人神经丝氨酸蛋白酶抑制剂易于形成聚合物提供了基础。

Local conformational flexibility provides a basis for facile polymer formation in human neuroserpin.

机构信息

Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Biophys J. 2011 Oct 5;101(7):1758-65. doi: 10.1016/j.bpj.2011.08.037.

Abstract

Neuroserpin is a regulator of neuronal growth and plasticity. Like other members of the serpin family, neuroserpin undergoes a large conformational change as part of its function. Unlike other serpins such as α(1)-antitrypsin, wild-type neuroserpin will polymerize under near-physiological conditions, and will spontaneously transition to the latent state. To probe the origins of this conformational lability, we have performed hydrogen exchange measurements and molecular-dynamics simulations on human neuroserpin. Hydrogen exchange indicates that neuroserpin has greater flexibility in the breach region and in β-strand 1C compared with α(1)-antitrypsin. Molecular-dynamics simulations show that the distance between the top of β-strands 3 and 5A averages 4.6 Å but becomes as large as 7.5 Å in neuroserpin while it remains stable at ∼3.5 Å in α(1)-antitrypsin. Further simulations show that the stabilizing S340A mutation suppresses these fluctuations in neuroserpin. The first principal component calculated from the simulations shows a movement of helix F away from the face of β-sheet A in neuroserpin while no such movement is evident in α(1)-antitrypsin. The increased mobility of these regions in neuroserpin relative to α(1)-antitrypsin provides a basis for neuroserpin's increased tendency toward the formation of polymers and/or the latent state.

摘要

神经丝氨酸蛋白酶抑制剂是一种调节神经元生长和可塑性的物质。与丝氨酸蛋白酶家族的其他成员一样,神经丝氨酸蛋白酶抑制剂在其功能过程中会发生很大的构象变化。与其他丝氨酸蛋白酶抑制剂(如α1-抗胰蛋白酶)不同,野生型神经丝氨酸蛋白酶抑制剂在接近生理条件下会聚合,并会自发地转变为潜伏状态。为了探究这种构象不稳定性的起源,我们对人源神经丝氨酸蛋白酶抑制剂进行了氢氚交换实验和分子动力学模拟。氢氚交换实验表明,与α1-抗胰蛋白酶相比,神经丝氨酸蛋白酶抑制剂在缺口区域和β-链 1C 中具有更大的灵活性。分子动力学模拟表明,β-链 3 和 5A 顶端之间的距离在神经丝氨酸蛋白酶抑制剂中平均为 4.6Å,但在神经丝氨酸蛋白酶抑制剂中可达到 7.5Å,而在 α1-抗胰蛋白酶中则保持稳定在约 3.5Å。进一步的模拟表明,稳定化 S340A 突变抑制了神经丝氨酸蛋白酶抑制剂中的这些波动。从模拟中计算出的第一主成分显示,神经丝氨酸蛋白酶抑制剂中的 F 螺旋从 A 片层的表面移动,而在 α1-抗胰蛋白酶中则没有明显的这种运动。与 α1-抗胰蛋白酶相比,神经丝氨酸蛋白酶抑制剂中这些区域的流动性增加,为其形成聚合物和/或潜伏状态的倾向增加提供了基础。

相似文献

1
Local conformational flexibility provides a basis for facile polymer formation in human neuroserpin.
Biophys J. 2011 Oct 5;101(7):1758-65. doi: 10.1016/j.bpj.2011.08.037.
3
Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics.
Biochim Biophys Acta. 2015 Feb;1854(2):110-7. doi: 10.1016/j.bbapap.2014.10.002. Epub 2014 Nov 6.
4
Physiological and pathological functions of neuroserpin: Regulation of cellular responses through multiple mechanisms.
Semin Cell Dev Biol. 2017 Feb;62:152-159. doi: 10.1016/j.semcdb.2016.09.007. Epub 2016 Sep 14.
5
6
The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry.
J Biol Chem. 2008 Nov 7;283(45):30804-11. doi: 10.1074/jbc.M804048200. Epub 2008 Sep 15.
7
The tempered polymerization of human neuroserpin.
PLoS One. 2012;7(3):e32444. doi: 10.1371/journal.pone.0032444. Epub 2012 Mar 6.
8
On the molecular structure of human neuroserpin polymers.
Proteins. 2012 Jan;80(1):8-13. doi: 10.1002/prot.23197. Epub 2011 Nov 9.
9
Contrasting conformational dynamics of β-sheet A and helix F with implications in neuroserpin inhibition and aggregation.
Int J Biol Macromol. 2021 Apr 15;176:117-125. doi: 10.1016/j.ijbiomac.2021.01.171. Epub 2021 Jan 28.
10
Changes in strand 6B and helix B during neuroserpin inhibition: Implication in severity of clinical phenotype.
Biochim Biophys Acta Proteins Proteom. 2020 Apr;1868(4):140363. doi: 10.1016/j.bbapap.2020.140363. Epub 2020 Jan 16.

引用本文的文献

1
, Adult-Onset Immunodeficiency, and Generalized Pustular Psoriasis.
Genes (Basel). 2023 Jan 19;14(2):266. doi: 10.3390/genes14020266.
3
Neuroserpin: structure, function, physiology and pathology.
Cell Mol Life Sci. 2021 Oct;78(19-20):6409-6430. doi: 10.1007/s00018-021-03907-6. Epub 2021 Aug 17.
4
A New Explanation of Inflammation in Rheumatoid Arthritis Patients With Respect to Claudin-5, Matrix Metalloproteinase-9, and Neuroserpin.
Arch Rheumatol. 2016 Aug 1;31(4):299-305. doi: 10.5606/ArchRheumatol.2016.5974. eCollection 2016 Dec.
8
Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics.
Biochim Biophys Acta. 2015 Feb;1854(2):110-7. doi: 10.1016/j.bbapap.2014.10.002. Epub 2014 Nov 6.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
ProDy: protein dynamics inferred from theory and experiments.
Bioinformatics. 2011 Jun 1;27(11):1575-7. doi: 10.1093/bioinformatics/btr168. Epub 2011 Apr 5.
3
Characterisation of serpin polymers in vitro and in vivo.
Methods. 2011 Mar;53(3):255-66. doi: 10.1016/j.ymeth.2010.11.008. Epub 2010 Nov 27.
4
Interaction energy based protein structure networks.
Biophys J. 2010 Dec 1;99(11):3704-15. doi: 10.1016/j.bpj.2010.08.079.
5
Two latent and two hyperstable polymeric forms of human neuroserpin.
Biophys J. 2010 Nov 17;99(10):3402-11. doi: 10.1016/j.bpj.2010.09.021.
7
8
Conformational pathology of the serpins: themes, variations, and therapeutic strategies.
Annu Rev Biochem. 2009;78:147-76. doi: 10.1146/annurev.biochem.78.082107.133320.
9
Wordom: a program for efficient analysis of molecular dynamics simulations.
Bioinformatics. 2007 Oct 1;23(19):2625-7. doi: 10.1093/bioinformatics/btm378. Epub 2007 Aug 23.
10
Neuroserpin binds Abeta and is a neuroprotective component of amyloid plaques in Alzheimer disease.
J Biol Chem. 2006 Sep 29;281(39):29268-77. doi: 10.1074/jbc.M600690200. Epub 2006 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验