Suppr超能文献

基于核的偏最小二乘模拟退火优化正交投影到潜变量的 1H NMR 代谢组学数据的非线性建模。

Non-linear modeling of 1H NMR metabonomic data using kernel-based orthogonal projections to latent structures optimized by simulated annealing.

机构信息

Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.

出版信息

Anal Chim Acta. 2011 Oct 31;705(1-2):72-80. doi: 10.1016/j.aca.2011.04.016. Epub 2011 Apr 20.

Abstract

Linear multivariate projection methods are frequently applied for predictive modeling of spectroscopic data in metabonomic studies. The OPLS method is a commonly used computational procedure for characterizing spectral metabonomic data, largely due to its favorable model interpretation properties providing separate descriptions of predictive variation and response-orthogonal structured noise. However, when the relationship between descriptor variables and the response is non-linear, conventional linear models will perform sub-optimally. In this study we have evaluated to what extent a non-linear model, kernel-based orthogonal projections to latent structures (K-OPLS), can provide enhanced predictive performance compared to the linear OPLS model. Just like its linear counterpart, K-OPLS provides separate model components for predictive variation and response-orthogonal structured noise. The improved model interpretation by this separate modeling is a property unique to K-OPLS in comparison to other kernel-based models. Simulated annealing (SA) was used for effective and automated optimization of the kernel-function parameter in K-OPLS (SA-K-OPLS). Our results reveal that the non-linear K-OPLS model provides improved prediction performance in three separate metabonomic data sets compared to the linear OPLS model. We also demonstrate how response-orthogonal K-OPLS components provide valuable biological interpretation of model and data. The metabonomic data sets were acquired using proton Nuclear Magnetic Resonance (NMR) spectroscopy, and include a study of the liver toxin galactosamine, a study of the nephrotoxin mercuric chloride and a study of Trypanosoma brucei brucei infection. Automated and user-friendly procedures for the kernel-optimization have been incorporated into version 1.1.1 of the freely available K-OPLS software package for both R and Matlab to enable easy application of K-OPLS for non-linear prediction modeling.

摘要

线性多元投影方法常用于代谢组学中预测建模光谱数据。OPLS 方法是一种常用的计算程序,用于描述光谱代谢组学数据,主要是因为它具有有利的模型解释特性,提供了预测变化和响应正交结构噪声的单独描述。然而,当描述变量与响应之间的关系是非线性时,传统的线性模型将表现不佳。在这项研究中,我们评估了非线性模型——基于核的正交投影到潜在结构(K-OPLS)在多大程度上可以提供比线性 OPLS 模型更好的预测性能。与线性 OPLS 模型类似,K-OPLS 为预测变化和响应正交结构噪声提供了单独的模型组件。通过这种单独建模提供的改进模型解释是 K-OPLS 与其他基于核的模型相比的独特属性。模拟退火(SA)用于有效和自动优化 K-OPLS 中的核函数参数(SA-K-OPLS)。我们的结果表明,与线性 OPLS 模型相比,非线性 K-OPLS 模型在三个独立的代谢组学数据集提供了更好的预测性能。我们还演示了如何响应正交 K-OPLS 组件为模型和数据提供有价值的生物学解释。代谢组学数据集是使用质子核磁共振(NMR)光谱获得的,包括对肝毒素半乳糖胺的研究、对肾毒素氯化汞的研究和对布氏锥虫布鲁斯感染的研究。已将用于核优化的自动和用户友好的程序集成到免费提供的 K-OPLS 软件包的版本 1.1.1 中,用于 R 和 Matlab,以便于将 K-OPLS 轻松应用于非线性预测建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验