Suppr超能文献

使用微流控技术对相变全氟碳液滴进行精密制造。

Precision manufacture of phase-change perfluorocarbon droplets using microfluidics.

机构信息

Curriculum of Applied Sciences and Engineering-Materials Science, The University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Ultrasound Med Biol. 2011 Nov;37(11):1952-7. doi: 10.1016/j.ultrasmedbio.2011.08.012. Epub 2011 Oct 2.

Abstract

Liquid perfluorocarbon droplets have been of interest in the medical acoustics community for use as acoustically activated particles for tissue occlusion, imaging and therapeutics. To date, methods to produce liquid perfluorocarbon droplets typically result in a polydisperse size distribution. Because the threshold of acoustic activation is a function of diameter, there would be benefit from a monodisperse population to preserve uniformity in acoustic activation parameters. Through use of a microfluidic device with flow-focusing technology, the production of droplets of perfluoropentane with a uniform size distribution is demonstrated. Stability studies indicate that these droplets are stable in storage for at least two weeks. Acoustic studies illustrate the thresholds of vaporization as a function of droplet diameter, and a logarithmic relationship is observed between acoustic pressure and vaporization threshold within the size ranges studied. Droplets of uniform size have very little variability in acoustic vaporization threshold. Results indicate that microfluidic technology can enable greater manufacturing control of phase-change perfluorocarbons for acoustic droplet vaporization applications.

摘要

液体全氟碳滴在医学声学领域引起了人们的兴趣,可作为声激活颗粒用于组织闭塞、成像和治疗。迄今为止,生产液体全氟碳滴的方法通常会导致多分散的粒径分布。由于声激活的阈值是直径的函数,因此使用单分散群体将有助于保持声激活参数的一致性。通过使用具有流聚焦技术的微流控装置,展示了具有均匀粒径分布的全氟戊烷液滴的生产。稳定性研究表明,这些液滴在储存至少两周内是稳定的。声学研究说明了作为液滴直径函数的汽化阈值,并且在研究的尺寸范围内观察到声压和汽化阈值之间的对数关系。具有均匀尺寸的液滴在声汽化阈值方面的变化非常小。结果表明,微流控技术可以实现相变全氟碳的更大制造控制,用于声液滴汽化应用。

相似文献

1
Precision manufacture of phase-change perfluorocarbon droplets using microfluidics.
Ultrasound Med Biol. 2011 Nov;37(11):1952-7. doi: 10.1016/j.ultrasmedbio.2011.08.012. Epub 2011 Oct 2.
5
Acoustic vaporization threshold of lipid-coated perfluoropentane droplets.
J Acoust Soc Am. 2018 Apr;143(4):2001. doi: 10.1121/1.5027817.
7
Spontaneous Nucleation of Stable Perfluorocarbon Emulsions for Ultrasound Contrast Agents.
Nano Lett. 2019 Jan 9;19(1):173-181. doi: 10.1021/acs.nanolett.8b03585. Epub 2018 Dec 19.
8
Acoustic Droplet Vaporization of Perfluorocarbon Droplets in 3D-Printable Gelatin Methacrylate Scaffolds.
Ultrasound Med Biol. 2021 Nov;47(11):3263-3274. doi: 10.1016/j.ultrasmedbio.2021.07.016. Epub 2021 Aug 26.
9
Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro.
Ultrasound Med Biol. 2003 Sep;29(9):1359-65. doi: 10.1016/s0301-5629(03)00980-3.
10
Acoustic droplet vaporization is initiated by superharmonic focusing.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1697-702. doi: 10.1073/pnas.1312171111. Epub 2014 Jan 21.

引用本文的文献

1
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
4
Acoustic Nanodrops for Biomedical Applications.
Curr Opin Colloid Interface Sci. 2020 Dec;50. doi: 10.1016/j.cocis.2020.08.008. Epub 2020 Aug 26.
6
Closed-loop feedback control of microbubble diameter from a flow-focusing microfluidic device.
Biomicrofluidics. 2020 May 7;14(3):034101. doi: 10.1063/5.0005205. eCollection 2020 May.
7
Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics.
Biomed Res Int. 2019 Jul 14;2019:9480193. doi: 10.1155/2019/9480193. eCollection 2019.
8
9
Acoustic droplet vaporization-mediated dissolved oxygen scavenging in blood-mimicking fluids, plasma, and blood.
Ultrason Sonochem. 2019 Sep;56:114-124. doi: 10.1016/j.ultsonch.2019.03.029. Epub 2019 Mar 28.
10
Numerical study on the impulsive growth of a gaseous plug inside a cylindrical vein with compliant coating.
Bioimpacts. 2018;8(4):271-279. doi: 10.15171/bi.2018.30. Epub 2017 Sep 18.

本文引用的文献

1
Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging.
Ultrasound Med Biol. 2011 Sep;37(9):1518-30. doi: 10.1016/j.ultrasmedbio.2011.05.021. Epub 2011 Jul 19.
2
Acoustic droplet vaporization for enhancement of thermal ablation by high intensity focused ultrasound.
Acad Radiol. 2011 Sep;18(9):1123-32. doi: 10.1016/j.acra.2011.04.012. Epub 2011 Jun 23.
3
Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing.
Bubble Sci Eng Technol. 2010 Dec;2(2):33-40. doi: 10.1179/175889610x12779105661532.
4
Controllable microfluidic production of multicomponent multiple emulsions.
Lab Chip. 2011 May 7;11(9):1587-92. doi: 10.1039/c1lc20065h. Epub 2011 Apr 1.
5
An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation.
Ultrasound Med Biol. 2010 Nov;36(11):1856-66. doi: 10.1016/j.ultrasmedbio.2010.07.001.
6
Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions.
Pharm Res. 2010 Dec;27(12):2753-65. doi: 10.1007/s11095-010-0277-5. Epub 2010 Sep 25.
7
Initial investigation of acoustic droplet vaporization for occlusion in canine kidney.
Ultrasound Med Biol. 2010 Oct;36(10):1691-703. doi: 10.1016/j.ultrasmedbio.2010.06.020.
8
Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers.
Ultrasound Med Biol. 2010 Mar;36(3):419-29. doi: 10.1016/j.ultrasmedbio.2009.11.009. Epub 2010 Feb 4.
9
Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers.
Bubble Sci Eng Technol. 2009;1(1-2):31-39. doi: 10.1179/175889709X446516.
10
Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles.
J Control Release. 2009 Sep 15;138(3):268-76. doi: 10.1016/j.jconrel.2009.05.026. Epub 2009 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验