Borden Mark A, Shakya Gazendra, Upadhyay Awaneesh, Song Kang-Ho
Biomedical Engineering, Mechanical Engineering, University of Colorado, Boulder, USA.
Curr Opin Colloid Interface Sci. 2020 Dec;50. doi: 10.1016/j.cocis.2020.08.008. Epub 2020 Aug 26.
Acoustic nanodrops are designed to vaporize into ultrasound-responsive microbubbles, which presents certain challenges nonexistent for conventional nano-emulsions. The requirements of biocompatibility, vaporizability and colloidal stability has focused research on perfluorocarbons (PFCs). Shorter PFCs yield better vaporizability via their lower critical temperature, but they also dissolve more easily owing to their higher vapor pressure and solubility. Thus, acoustic nanodrops have required a tradeoff between vaporizability and colloidal stability in vivo. The recent advent of vaporizable endoskeletal droplets, which are both stable and vaporizable, may have solved this problem. The purpose of this review is to justify this premise by pointing out the beneficial properties of acoustic nanodrops, providing an analysis of vaporization and dissolution mechanisms, and reviewing current biomedical applications.
声学纳米滴被设计成可汽化为超声响应性微泡,这带来了一些传统纳米乳液不存在的挑战。生物相容性、可汽化性和胶体稳定性的要求使研究聚焦于全氟化碳(PFCs)。较短链的全氟化碳因其较低的临界温度而具有更好的可汽化性,但由于其较高的蒸气压和溶解度,它们也更容易溶解。因此,声学纳米滴在体内的可汽化性和胶体稳定性之间需要进行权衡。最近出现的可汽化内骨骼液滴既稳定又可汽化,可能已经解决了这个问题。本综述的目的是通过指出声学纳米滴的有益特性、分析汽化和溶解机制以及回顾当前的生物医学应用来证明这一前提。