Suppr超能文献

使用带约束的最小二乘法同时估计反向散射和衰减。

Simultaneous backscatter and attenuation estimation using a least squares method with constraints.

机构信息

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Ultrasound Med Biol. 2011 Dec;37(12):2096-104. doi: 10.1016/j.ultrasmedbio.2011.08.008. Epub 2011 Oct 2.

Abstract

Backscatter and attenuation variations are essential contrast mechanisms in ultrasound B-mode imaging. Emerging quantitative ultrasound methods extract and display absolute values of these tissue properties. However, in clinical applications, backscatter and attenuation parameters sometimes are not easily measured because of tissues inhomogeneities above the region-of-interest (ROI). We describe a least squares method (LSM) that fits the echo signal power spectra from a ROI to a three-parameter tissue model that simultaneously yields estimates of attenuation losses and backscatter coefficients. To test the method, tissue-mimicking phantoms with backscatter and attenuation contrast as well as uniform phantoms were scanned with linear array transducers on a Siemens S2000. Attenuation and backscatter coefficients estimated by the LSM were compared with those derived using a reference phantom method (Yao et al. 1990). Results show that the LSM yields effective attenuation coefficients for uniform phantoms comparable to values derived using the reference phantom method. For layered phantoms exhibiting nonuniform backscatter, the LSM resulted in smaller attenuation estimation errors than the reference phantom method. Backscatter coefficients derived using the LSM were in excellent agreement with values obtained from laboratory measurements on test samples and with theory. The LSM is more immune to depth-dependent backscatter changes than commonly used reference phantom methods.

摘要

背散射和衰减变化是超声 B 模式成像中的基本对比机制。新兴的定量超声方法提取并显示这些组织特性的绝对值。然而,在临床应用中,由于感兴趣区域 (ROI) 上方的组织不均匀性,背散射和衰减参数有时难以测量。我们描述了一种最小二乘法 (LSM),该方法将 ROI 中的回波信号功率谱拟合到一个三参数组织模型,该模型同时给出衰减损失和背散射系数的估计值。为了测试该方法,使用线性阵列换能器在 Siemens S2000 上对具有背散射和衰减对比度的组织模拟体模和均匀体模进行了扫描。使用 LSM 估计的衰减和背散射系数与使用参考体模方法 (Yao 等人,1990) 得出的系数进行了比较。结果表明,LSM 对均匀体模产生的有效衰减系数与使用参考体模方法得出的系数相当。对于表现出非均匀背散射的分层体模,LSM 导致的衰减估计误差小于参考体模方法。使用 LSM 得出的背散射系数与从实验室测试样品获得的值以及与理论值非常吻合。与常用的参考体模方法相比,LSM 对深度相关的背散射变化更具抵抗力。

相似文献

1
Simultaneous backscatter and attenuation estimation using a least squares method with constraints.
Ultrasound Med Biol. 2011 Dec;37(12):2096-104. doi: 10.1016/j.ultrasmedbio.2011.08.008. Epub 2011 Oct 2.
3
Evaluation of fatty proportion in fatty liver using least squares method with constraints.
Biomed Mater Eng. 2014;24(6):2811-20. doi: 10.3233/BME-141099.
5
Scatterer number density considerations in reference phantom-based attenuation estimation.
Ultrasound Med Biol. 2014 Jul;40(7):1680-96. doi: 10.1016/j.ultrasmedbio.2014.01.022. Epub 2014 Apr 13.
7
Improving the statistics of quantitative ultrasound techniques with deformation compounding: an experimental study.
Ultrasound Med Biol. 2011 Dec;37(12):2066-74. doi: 10.1016/j.ultrasmedbio.2011.09.008. Epub 2011 Oct 26.
8
Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):340-52. doi: 10.1109/TUFFC.2010.1414.
9
Theoretical and phantom based investigation of the impact of sound speed and backscatter variations on attenuation slope estimation.
Ultrasonics. 2011 Aug;51(6):758-67. doi: 10.1016/j.ultras.2011.03.004. Epub 2011 Mar 23.
10
Attenuation estimation using spectral cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):510-9. doi: 10.1109/tuffc.2007.274.

引用本文的文献

1
Clutter-Generating Phantom Material. Part II: Utilization in the Comparison of Conventional and Regularized Ultrasound Attenuation Estimation.
Ultrasound Med Biol. 2025 May;51(5):777-787. doi: 10.1016/j.ultrasmedbio.2025.01.006. Epub 2025 Feb 11.
2
Recent Advances in Attenuation Estimation.
Adv Exp Med Biol. 2023;1403:85-104. doi: 10.1007/978-3-031-21987-0_6.
3
Attenuation Compensation and Estimation.
Adv Exp Med Biol. 2023;1403:67-84. doi: 10.1007/978-3-031-21987-0_5.
4
Quantitative Ultrasound: Experimental Implementation.
Adv Exp Med Biol. 2023;1403:29-42. doi: 10.1007/978-3-031-21987-0_3.
5
Power laws prevail in medical ultrasound.
Phys Med Biol. 2022 Apr 20;67(9). doi: 10.1088/1361-6560/ac637e.
7
Robust Scatterer Number Density Segmentation of Ultrasound Images.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1169-1180. doi: 10.1109/TUFFC.2022.3144685. Epub 2022 Mar 30.
8
9
Noise Suppression for Ultrasound Attenuation Coefficient Estimation Based on Spectrum Normalization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Aug;68(8):2667-2674. doi: 10.1109/TUFFC.2021.3074293. Epub 2021 Jul 26.
10
Total attenuation compensation for backscatter coefficient estimation using full angular spatial compounding.
Ultrasonics. 2021 Jul;114:106376. doi: 10.1016/j.ultras.2021.106376. Epub 2021 Jan 27.

本文引用的文献

1
Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2284-92. doi: 10.1109/TUFFC.2010.1689.
2
Hybrid spectral domain method for attenuation slope estimation.
Ultrasound Med Biol. 2008 Nov;34(11):1808-19. doi: 10.1016/j.ultrasmedbio.2008.04.011. Epub 2008 Jul 14.
3
Tests of backscatter coefficient measurement using broadband pulses.
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(5):603-7. doi: 10.1109/58.238114.
4
Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone.
J Biomech. 2008;41(2):347-55. doi: 10.1016/j.jbiomech.2007.09.001. Epub 2007 Oct 29.
5
An ultrasound research interface for a clinical system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Jan;54(1):198-210. doi: 10.1109/tuffc.2007.226.
6
Initial clinical experience imaging scatterer size and strain in thyroid nodules.
J Ultrasound Med. 2006 Aug;25(8):1021-9. doi: 10.7863/jum.2006.25.8.1021.
7
Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels.
Ultrasound Med Biol. 2006 Feb;32(2):261-70. doi: 10.1016/j.ultrasmedbio.2005.10.009.
8
Ultrasonic computed tomography reconstruction of the attenuation coefficient using a linear array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):2011-22. doi: 10.1109/tuffc.2005.1561670.
9
Estimation of total attenuation and scatterer size from backscattered ultrasound waveforms.
J Acoust Soc Am. 2005 Mar;117(3 Pt 1):1431-9. doi: 10.1121/1.1858192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验