Suppr超能文献

用于估计甚高频超声扫描仪 3D 分辨率的无回声球型体模。

Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.

机构信息

University of Wisconsin-Madison, Medical Physics Department, Madison, WI, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2284-92. doi: 10.1109/TUFFC.2010.1689.

Abstract

Two phantoms have been constructed for assessing performance of high-frequency ultrasound imagers. They also allow for periodic quality assurance tests and training technicians in the use of higher-frequency scanners. The phantoms contain eight blocks of tissue-mimicking material; each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the frequency dependence of the backscatter coefficient of the background material. Because spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high-frequency scanners are compared. One employs single-element (fixed focus) transducers (25 and 55 MHz), and the other employs variable focus linear arrays (20, 30, and 40 MHz). The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. In this preliminary report, only one human observer analyzed images.

摘要

两个用于评估高频超声成像仪性能的体模。它们还可以进行定期的质量保证测试,并培训技术人员使用更高频率的扫描仪。体模包含八个组织模拟材料块;每个块包含一个空间上随机分布的适当小的无声球,具有小的直径分布。这八个平均球直径分布在 0.10 到 1.09 毫米之间。这两个体模主要在背景材料的反向散射系数的频率依赖性方面有所不同。由于球体没有优先取向,分辨率的所有三个(空间)维度都平等地有助于球体检测;因此,分辨率被称为 3-D。比较了两个高频扫描仪。一个采用单元件(固定焦点)换能器(25 和 55 MHz),另一个采用可变焦点线性阵列(20、30 和 40 MHz)。每个尺寸的球体的检测深度范围是根据 3-D 分辨率随深度的变化来确定的。正如预期的那样,与线性阵列相比,单元件换能器在有用的成像深度范围内受到严重限制。在本初步报告中,只有一名人类观察者分析了图像。

相似文献

1
Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2284-92. doi: 10.1109/TUFFC.2010.1689.
2
Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):994-1005. doi: 10.1109/TUFFC.2011.1990.
3
MO-D-218-02: Ultrasound Phantoms in Image Quality Measurements and Performance Assessment.
Med Phys. 2012 Jun;39(6Part21):3870. doi: 10.1118/1.4735800.
4
Low-echo sphere phantoms and methods for assessing imaging performance of medical ultrasound scanners.
Ultrasound Med Biol. 2014 Jul;40(7):1697-717. doi: 10.1016/j.ultrasmedbio.2014.02.011. Epub 2014 Apr 24.
5
Volumetric ultrasound imaging using 2-D CMUT arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1581-94. doi: 10.1109/tuffc.2003.1251142.
7
3-D-Printed Phantom Fabricated by Photopolymer Jetting Technology for High-Frequency Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jun;65(6):1048-1055. doi: 10.1109/TUFFC.2018.2823545.
8
Correspondence - Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Dec;59(12):2825-30. doi: 10.1109/TUFFC.2012/2525.
10
The resolution integral: visual and computational approaches to characterizing ultrasound images.
Phys Med Biol. 2010 Sep 7;55(17):5067-88. doi: 10.1088/0031-9155/55/17/012. Epub 2010 Aug 11.

引用本文的文献

1
Challenges of conducting quantitative ultrasound with a multimodal optical imaging system.
Phys Med Biol. 2021 Jan 26;66(3):035008. doi: 10.1088/1361-6560/abc93c.
2
Photoacoustic signal characterization of cancer treatment response: Correlation with changes in tumor oxygenation.
Photoacoustics. 2017 Mar 21;5:25-35. doi: 10.1016/j.pacs.2017.03.003. eCollection 2017 Mar.
3
A sidelobe suppressing near-field beamforming approach for ultrasound array imaging.
J Acoust Soc Am. 2015 May;137(5):2785-90. doi: 10.1121/1.4919318.
4
Wall-less flow phantom for high-frequency ultrasound applications.
Ultrasound Med Biol. 2015 Mar;41(3):890-7. doi: 10.1016/j.ultrasmedbio.2014.09.018. Epub 2014 Dec 23.
5
Ultrasound bio-microscopic image segmentation for evaluation of zebrafish cardiac function.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Apr;60(4):718-26. doi: 10.1109/TUFFC.2013.2620.
6
Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12):2620-30. doi: 10.1109/TUFFC.2011.2125.
7
A flexible annular-array imaging platform for micro-ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):178-86. doi: 10.1109/TUFFC.2013.2548.
8
An open system for intravascular ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Oct;59(10):2201-9. doi: 10.1109/TUFFC.2012.2446.
9
Non-planar pad-printed thick-film focused high-frequency ultrasonic transducers for imaging and therapeutic applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):1976-82. doi: 10.1109/TUFFC.2012.2416.
10
Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of Zebrafish heart using high frame rate ultrasound biomicroscopy.
Ann Biomed Eng. 2013 Jan;41(1):41-52. doi: 10.1007/s10439-012-0636-y. Epub 2012 Aug 29.

本文引用的文献

1
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
J Ultrasound Med. 2005 Sep;24(9):1235-50. doi: 10.7863/jum.2005.24.9.1235.
2
Improved method for determining resolution zones in ultrasound phantoms with spherical simulated lesions.
Ultrasound Med Biol. 2001 Dec;27(12):1667-76. doi: 10.1016/s0301-5629(01)00473-2.
3
Interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements.
J Ultrasound Med. 1999 Sep;18(9):615-31. doi: 10.7863/jum.1999.18.9.615.
4
Liquid or solid ultrasonically tissue-mimicking materials with very low scatter.
Ultrasound Med Biol. 1998 May;24(4):535-42. doi: 10.1016/s0301-5629(98)00013-1.
5
Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz.
Ultrasound Med Biol. 1991;17(7):653-66. doi: 10.1016/0301-5629(91)90096-f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验