Suppr超能文献

肾单位形成在肾发生停止时采用一种新颖的空间拓扑结构。

Nephron formation adopts a novel spatial topology at cessation of nephrogenesis.

机构信息

Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.

出版信息

Dev Biol. 2011 Dec 1;360(1):110-22. doi: 10.1016/j.ydbio.2011.09.011. Epub 2011 Sep 21.

Abstract

Nephron number in the mammalian kidney is known to vary dramatically, with postnatal renal function directly influenced by nephron complement. What determines final nephron number is poorly understood but nephron formation in the mouse kidney ceases within the first few days after birth, presumably due to the loss of all remaining nephron progenitors via epithelial differentiation. What initiates this event is not known. Indeed, whether nephron formation occurs in the same way at this time as during embryonic development has also not been examined. In this study, we investigate the key cellular compartments involved in nephron formation; the ureteric tip, cap mesenchyme and early nephrons; from postnatal day (P) 0 to 6 in the mouse. High resolution analyses of gene and protein expression indicate that loss of nephron progenitors precedes loss of ureteric tip identity, but show spatial shifts in the expression of cap mesenchyme genes during this time. In addition, cap mesenchymal volume and rate of proliferation decline prior to birth. Section-based 3D modeling and Optical Projection Tomography revealed a burst of ectopic nephron induction, with the formation of multiple (up to 5) nephrons per ureteric tip evident from P2. While the distal-proximal patterning of these nephrons occurred normally, their spatial relationship with the ureteric compartment was altered. We propose that this phase of nephron formation represents an acceleration of differentiation within the cap mesenchyme due to a displacement of signals within the nephrogenic niche.

摘要

哺乳动物肾脏中的肾单位数量变化很大,出生后的肾功能直接受到肾单位数量的影响。决定最终肾单位数量的因素尚不清楚,但小鼠肾脏中的肾单位形成在出生后几天内就停止了,可能是由于所有剩余的肾祖细胞通过上皮分化而丢失。目前还不知道是什么引发了这一事件。事实上,在这个时候,肾单位的形成是否与胚胎发育时以同样的方式发生,也尚未被检验。在这项研究中,我们研究了参与肾单位形成的关键细胞区室;输尿管尖端、帽状间质和早期肾单位;从小鼠出生后第 0 天到第 6 天。高分辨率的基因和蛋白表达分析表明,肾祖细胞的丢失先于输尿管尖端特征的丢失,但在此期间,帽状间质基因的表达出现了空间移位。此外,帽状间质的体积和增殖率在出生前下降。基于切片的 3D 建模和光学投影断层扫描显示,出生后会出现异位肾单位诱导的爆发,每个输尿管尖端可形成多个(多达 5 个)肾单位。虽然这些肾单位的远-近端模式发生正常,但它们与输尿管区室的空间关系发生了改变。我们提出,由于肾发生龛内信号的移位,帽状间质中的分化加速导致了这一阶段的肾单位形成。

相似文献

1
Nephron formation adopts a novel spatial topology at cessation of nephrogenesis.
Dev Biol. 2011 Dec 1;360(1):110-22. doi: 10.1016/j.ydbio.2011.09.011. Epub 2011 Sep 21.
3
Cessation of renal morphogenesis in mice.
Dev Biol. 2007 Oct 15;310(2):379-87. doi: 10.1016/j.ydbio.2007.08.021. Epub 2007 Aug 16.
7
Notch signaling promotes nephrogenesis by downregulating Six2.
Development. 2016 Nov 1;143(21):3907-3913. doi: 10.1242/dev.143503. Epub 2016 Sep 15.
9
Defining and redefining the nephron progenitor population.
Pediatr Nephrol. 2011 Sep;26(9):1395-406. doi: 10.1007/s00467-010-1750-4. Epub 2011 Jan 14.
10
Neonatal nephron loss during active nephrogenesis results in altered expression of renal developmental genes and markers of kidney injury.
Physiol Genomics. 2021 Dec 1;53(12):509-517. doi: 10.1152/physiolgenomics.00059.2021. Epub 2021 Oct 27.

引用本文的文献

1
Bridging the gap of late-gestation nephrogenesis using a non-human primate model.
bioRxiv. 2025 Aug 22:2025.08.18.670897. doi: 10.1101/2025.08.18.670897.
2
Identification of renal stem cells in zebrafish.
Sci Adv. 2025 Aug 22;11(34):eadx5296. doi: 10.1126/sciadv.adx5296.
4
Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses.
Nat Mater. 2024 Nov;23(11):1582-1591. doi: 10.1038/s41563-024-02019-3. Epub 2024 Oct 9.
6
A single-cell time-lapse of mouse prenatal development from gastrula to birth.
Nature. 2024 Feb;626(8001):1084-1093. doi: 10.1038/s41586-024-07069-w. Epub 2024 Feb 14.
7
Characterizing post-branching nephrogenesis in the neonatal rabbit.
Sci Rep. 2023 Nov 6;13(1):19234. doi: 10.1038/s41598-023-46624-9.
8
A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup.
bioRxiv. 2023 Apr 5:2023.04.05.535726. doi: 10.1101/2023.04.05.535726.
9
The developing murine kidney actively negotiates geometric packing conflicts to avoid defects.
Dev Cell. 2023 Jan 23;58(2):110-120.e5. doi: 10.1016/j.devcel.2022.12.008.
10
Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism.
Development. 2022 Oct 1;149(19). doi: 10.1242/dev.200986. Epub 2022 Oct 3.

本文引用的文献

1
Microarrays and RNA-Seq identify molecular mechanisms driving the end of nephron production.
BMC Dev Biol. 2011 Mar 12;11:15. doi: 10.1186/1471-213X-11-15.
2
Calcium/NFAT signalling promotes early nephrogenesis.
Dev Biol. 2011 Apr 15;352(2):288-98. doi: 10.1016/j.ydbio.2011.01.033. Epub 2011 Feb 3.
3
Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism.
Dev Biol. 2011 Apr 1;352(1):58-69. doi: 10.1016/j.ydbio.2011.01.012. Epub 2011 Jan 21.
4
Defining and redefining the nephron progenitor population.
Pediatr Nephrol. 2011 Sep;26(9):1395-406. doi: 10.1007/s00467-010-1750-4. Epub 2011 Jan 14.
5
SOX9 controls epithelial branching by activating RET effector genes during kidney development.
Hum Mol Genet. 2011 Mar 15;20(6):1143-53. doi: 10.1093/hmg/ddq558. Epub 2011 Jan 6.
6
Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy.
J Matern Fetal Neonatal Med. 2010 Oct;23 Suppl 3:129-33. doi: 10.3109/14767058.2010.510646.
7
Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development.
Dev Cell. 2010 May 18;18(5):698-712. doi: 10.1016/j.devcel.2010.04.008.
8
The clinical importance of nephron mass.
J Am Soc Nephrol. 2010 Jun;21(6):898-910. doi: 10.1681/ASN.2009121248. Epub 2010 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验