Suppr超能文献

产生从网格细胞到位置细胞转换的网络结构。

The structure of networks that produce the transformation from grid cells to place cells.

机构信息

Sloan-Swartz Center for Theoretical Neurobiology, W.M. Keck Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, CA 94143-0444, USA.

出版信息

Neuroscience. 2011 Dec 1;197:293-306. doi: 10.1016/j.neuroscience.2011.09.002. Epub 2011 Sep 12.

Abstract

Since grid cells were discovered in the medial entorhinal cortex, several models have been proposed for the transformation from periodic grids to the punctate place fields of hippocampal place cells. These prior studies have each focused primarily on a particular model structure. By contrast, the goal of this study is to understand the general nature of the solutions that generate the grids-to-places transformation, and to exploit this insight to solve problems that were previously unsolved. First, we derive a family of feedforward networks that generate the grids-to-places transformations. These networks have in common an inverse relationship between the synaptic weights and a grid property that we call the normalized offset. Second, we analyze the solutions of prior models in terms of this novel measure and found to our surprise that almost all prior models yield solutions that can be described by this family of networks. The one exception is a model that is unrealistically sensitive to noise. Third, with this insight into the structure of the solutions, we then construct explicitly solutions for the grids-to-places transformation with multiple spatial maps, that is, with place fields in arbitrary locations either within the same (multiple place fields) or in different (global remapping) enclosures. These multiple maps are possible because the weights are learned or assigned in such a way that a group of weights contributes to spatial specificity in one context but remains spatially unstructured in another context. Fourth, we find parameters such that global remapping solutions can be found by synaptic learning in spiking neurons, despite previous suggestions that this might not be possible. In conclusion, our results demonstrate the power of understanding the structure of the solutions and suggest that we may have identified the structure that is common to all robust solutions of the grids-to-places transformation.

摘要

自从在内侧缰核皮层中发现网格细胞以来,已经提出了几种模型来解释从周期性网格到海马体位置细胞点状位置场的转变。这些先前的研究主要集中在特定的模型结构上。相比之下,本研究的目的是理解产生网格到位置转变的解决方案的一般性质,并利用这一见解来解决以前未解决的问题。首先,我们推导出一组产生网格到位置转变的前馈网络。这些网络具有一个共同点,即突触权重与我们称之为归一化偏移的网格属性之间存在反比关系。其次,我们根据这一新颖的度量标准分析了先前模型的解决方案,令我们惊讶的是,几乎所有先前的模型都产生了可以用这组网络来描述的解决方案。唯一的例外是一个对噪声非常敏感的模型。第三,有了对解决方案结构的这一深入了解,我们然后构建了具有多个空间图的网格到位置转变的明确解决方案,也就是说,在任意位置都有位置场,要么在同一范围内(多个位置场),要么在不同范围内(全局重映射)。这些多个图是可能的,因为权重是通过学习或以这样一种方式分配的,即一组权重在一个上下文下对空间特异性有贡献,但在另一个上下文下保持空间上无结构。第四,我们找到了一些参数,使得全局重映射解决方案可以通过尖峰神经元的突触学习来找到,尽管之前有人认为这可能是不可能的。总之,我们的结果证明了理解解决方案结构的强大之处,并表明我们可能已经确定了网格到位置转变的所有稳健解决方案共有的结构。

相似文献

4
From grids to places.从网格到场所。
J Comput Neurosci. 2007 Jun;22(3):297-9. doi: 10.1007/s10827-006-0013-7. Epub 2006 Dec 29.
5
Spatial and memory circuits in the medial entorhinal cortex.内嗅皮层中的空间与记忆回路。
Curr Opin Neurobiol. 2015 Jun;32:16-23. doi: 10.1016/j.conb.2014.10.008. Epub 2014 Oct 30.

引用本文的文献

3
Grid cells, border cells, and discrete complex analysis.网格细胞、边界细胞与离散复分析
Front Comput Neurosci. 2023 Oct 10;17:1242300. doi: 10.3389/fncom.2023.1242300. eCollection 2023.
8
10
Storage fidelity for sequence memory in the hippocampal circuit.海马体回路中序列记忆的存储保真度。
PLoS One. 2018 Oct 4;13(10):e0204685. doi: 10.1371/journal.pone.0204685. eCollection 2018.

本文引用的文献

5
The mechanism of rate remapping in the dentate gyrus.齿状回频率重映射的机制。
Neuron. 2010 Dec 22;68(6):1051-8. doi: 10.1016/j.neuron.2010.11.024.
7
Grid cells in pre- and parasubiculum.网格细胞在前扣带回和副扣带回中。
Nat Neurosci. 2010 Aug;13(8):987-94. doi: 10.1038/nn.2602. Epub 2010 Jul 25.
8
Development of the spatial representation system in the rat.大鼠空间表象系统的发育。
Science. 2010 Jun 18;328(5985):1576-80. doi: 10.1126/science.1188210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验