Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
Neural Netw. 2020 Jan;121:37-51. doi: 10.1016/j.neunet.2019.09.002. Epub 2019 Sep 6.
Hippocampal place cells and entorhinal grid cells are thought to form a representation of space by integrating internal and external sensory cues. Experimental data show that different subsets of place cells are controlled by vision, self-motion or a combination of both. Moreover, recent studies in environments with a high degree of visual aliasing suggest that a continuous interaction between place cells and grid cells can result in a deformation of hexagonal grids or in a progressive loss of visual cue control over grid fields. The computational nature of such a bidirectional interaction remains unclear. In this work we present a neural network model of the dynamic interaction between place cells and grid cells within the entorhinal-hippocampal processing loop. The model was tested in two recent experimental paradigms involving environments with visually similar compartments that provided conflicting evidence about visual cue control over self-motion-based spatial codes. Analysis of the model behavior suggests that the strength of entorhinal-hippocampal dynamical loop is the key parameter governing differential cue control in multi-compartment environments. Moreover, construction of separate spatial representations of visually identical compartments required a progressive weakening of visual cue control over place fields in favor of self-motion based mechanisms. More generally our results suggest a functional segregation between plastic and dynamic processes in hippocampal processing.
海马体位置细胞和内嗅网格细胞被认为通过整合内部和外部感觉线索来形成空间表示。实验数据表明,不同子集的位置细胞受视觉、自身运动或两者的组合控制。此外,最近在具有高度视觉混淆的环境中的研究表明,位置细胞和网格细胞之间的连续相互作用可能导致六边形网格的变形或网格场对视觉线索控制的逐渐丧失。这种双向相互作用的计算性质尚不清楚。在这项工作中,我们提出了一个内嗅-海马处理回路中位置细胞和网格细胞之间动态相互作用的神经网络模型。该模型在两个涉及具有视觉相似隔室的最近实验范式中进行了测试,这些隔室提供了关于视觉线索对基于自身运动的空间编码的控制的相互矛盾的证据。对模型行为的分析表明,内嗅-海马体动力回路的强度是控制多隔室环境中差异线索控制的关键参数。此外,为了在视觉上相同的隔室中构建单独的空间表示,需要逐渐削弱视觉线索对位置场的控制,以支持基于自身运动的机制。更一般地说,我们的结果表明海马体处理中的可塑性和动态过程之间存在功能分离。