Suppr超能文献

利用单光子计数荧光层析成像技术对大鼠进行全身光学成像。

Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography.

机构信息

Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, New Hampshire 03755, USA.

出版信息

Opt Lett. 2011 Oct 1;36(19):3723-5. doi: 10.1364/OL.36.003723.

Abstract

We used single-photon counting (SPC) detection for diffuse fluorescence tomography to image nanomolar (nM) concentrations of reporter dyes through a rat. Detailed phantom data are presented to show that every centimeter increase in tissue thickness leads to 1 order of magnitude decrease in the minimum fluorophore concentration detectable for a given detector sensitivity. Specifically, here, detection of Alexa Fluor 647 dyes is shown to be achievable for concentrations as low as 1 nM (<200 fM) through more than 5 cm in tissue phantoms, which indicates that this is feasible in larger rodent models. Because it is possible to detect sub-nM fluorescent inclusions with SPC technology in rats, it follows that it is possible to localize subpicomolar fluorophore concentrations in mice, putting the concentration sensitivity limits on the same order as nuclear medicine methods.

摘要

我们使用单光子计数 (SPC) 检测进行漫射荧光层析成像,通过大鼠来对纳摩尔 (nM) 浓度的报告染料进行成像。详细的体模数据表明,组织厚度每增加一厘米,对于给定的探测器灵敏度,可检测到的最小荧光团浓度就会降低一个数量级。具体来说,本文表明,通过组织体模中的超过 5 厘米,可实现对浓度低至 1 nM(<200 fM)的 Alexa Fluor 647 染料的检测,这表明在更大的啮齿动物模型中这是可行的。由于 SPC 技术在大鼠中有可能检测到亚纳摩尔的荧光内含物,因此可以在小鼠中定位亚皮摩尔浓度的荧光团,使浓度灵敏度与核医学方法处于同一水平。

相似文献

3
4
Localizing fluorophore (centroid) inside a scattering medium by depth perturbation.
J Biomed Opt. 2015 Jan;20(1):017003. doi: 10.1117/1.JBO.20.1.017003.
8
Čerenkov excited fluorescence tomography using external beam radiation.
Opt Lett. 2013 Apr 15;38(8):1364-6. doi: 10.1364/OL.38.001364.
10
Combined fluorescence and X-Ray tomography for quantitative in vivo detection of fluorophore.
Technol Cancer Res Treat. 2010 Feb;9(1):45-52. doi: 10.1177/153303461000900105.

引用本文的文献

1
Region-based diffuse optical tomography with registered atlas: acquisition of mouse optical properties.
Biomed Opt Express. 2016 Nov 14;7(12):5066-5080. doi: 10.1364/BOE.7.005066. eCollection 2016 Dec 1.
2
Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner.
Biomed Opt Express. 2015 Aug 26;6(9):3596-609. doi: 10.1364/BOE.6.003596. eCollection 2015 Sep 1.
3
Hybrid FMT-MRI applied to in vivo atherosclerosis imaging.
Biomed Opt Express. 2014 Apr 28;5(5):1664-76. doi: 10.1364/BOE.5.001664. eCollection 2014 May 1.
5
Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats.
Mol Imaging Biol. 2014 Jun;16(3):350-61. doi: 10.1007/s11307-013-0698-8.
6
Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise.
Biomed Opt Express. 2012 Sep 1;3(9):2131-41. doi: 10.1364/BOE.3.002131. Epub 2012 Aug 15.
9
Information loss and reconstruction in diffuse fluorescence tomography.
J Opt Soc Am A Opt Image Sci Vis. 2012 Mar 1;29(3):321-30. doi: 10.1364/JOSAA.29.000321.

本文引用的文献

1
Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction.
Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732. doi: 10.1002/cnm.1162.
3
Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications.
J Photochem Photobiol B. 2010 Jan 21;98(1):77-94. doi: 10.1016/j.jphotobiol.2009.11.007. Epub 2009 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验