Suppr超能文献

荧光和 X 射线断层扫描联合用于荧光团的定量体内检测。

Combined fluorescence and X-Ray tomography for quantitative in vivo detection of fluorophore.

机构信息

DxRay Inc., 19355 Business Center Dr. Suite 10, Northridge, CA 91324, USA.

出版信息

Technol Cancer Res Treat. 2010 Feb;9(1):45-52. doi: 10.1177/153303461000900105.

Abstract

Initial results from a novel dual modality preclinical imager which combines non-contact fluorescence tomography (FT) and x-ray computed tomography (CT) for preclinical functional and anatomical in vivo imaging are presented. The anatomical data from CT provides a priori information to the FT reconstruction to create overlaid functional and anatomical images with accurate localization and quantification of fluorophore distribution. Phantoms with inclusions containing Indocyanine-Green (ICG), and with heterogeneous backgrounds including iodine in compartments at different concentrations for CT contrast, have been imaged with the dual modality FT/CT system. Anatomical information from attenuation maps and optical morphological information from absorption and scattering maps are used as a priori information in the FT reconstruction. Although ICG inclusions can be located without the a priori information, the recovered ICG concentration shows 75% error. When the a priori information is utilized, the ICG concentration can be recovered with only 15% error. Developing the ability to accurately quantify fluorophore concentration in anatomical regions of interest may provide a powerful tool for in vivo small animal imaging.

摘要

本文介绍了一种新型的双模式临床前成像仪的初步结果,该成像仪结合了非接触式荧光层析成像(FT)和 X 射线计算机断层扫描(CT),用于临床前功能和解剖学的体内成像。CT 的解剖数据为 FT 重建提供了先验信息,可创建具有荧光团分布的准确定位和定量的功能和解剖图像。使用双模式 FT/CT 系统对包含吲哚菁绿(ICG)的包含物的体模以及具有不同浓度碘的包含物的异质背景的体模进行了成像,包括在不同浓度的隔室中的 CT 对比。衰减图的解剖学信息和吸收和散射图的光学形态学信息被用作 FT 重建的先验信息。尽管可以在没有先验信息的情况下定位 ICG 包含物,但恢复的 ICG 浓度显示出 75%的误差。当利用先验信息时,ICG 浓度的恢复误差仅为 15%。开发能够准确量化感兴趣的解剖区域中荧光团浓度的能力可能为小动物体内成像提供强大的工具。

相似文献

1
Combined fluorescence and X-Ray tomography for quantitative in vivo detection of fluorophore.
Technol Cancer Res Treat. 2010 Feb;9(1):45-52. doi: 10.1177/153303461000900105.
2
Quantitative fluorescence tomography with functional and structural a priori information.
Appl Opt. 2009 Mar 1;48(7):1328-36. doi: 10.1364/ao.48.001328.
3
Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system.
Opt Express. 2010 Apr 12;18(8):7835-50. doi: 10.1364/OE.18.007835.
4
A gantry-based tri-modality system for bioluminescence tomography.
Rev Sci Instrum. 2012 Apr;83(4):043708. doi: 10.1063/1.3698295.
5
A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging.
Phys Med Biol. 2011 Aug 7;56(15):4731-47. doi: 10.1088/0031-9155/56/15/007. Epub 2011 Jul 13.
6
Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study.
Phys Med Biol. 2007 Sep 21;52(18):5569-85. doi: 10.1088/0031-9155/52/18/007. Epub 2007 Sep 3.
7
Quantitative fluorescence tomography using a trimodality system: in vivo validation.
J Biomed Opt. 2010 Jul-Aug;15(4):040503. doi: 10.1117/1.3467495.
9
Assessing indocyanine green pharmacokinetics in mouse liver with a dynamic diffuse fluorescence tomography system.
J Biophotonics. 2018 Oct;11(10):e201800041. doi: 10.1002/jbio.201800041. Epub 2018 Jun 19.

引用本文的文献

1
A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images.
PLoS One. 2017 Jan 6;12(1):e0169424. doi: 10.1371/journal.pone.0169424. eCollection 2017.
2
Fluorescence molecular tomography: principles and potential for pharmaceutical research.
Pharmaceutics. 2011 Apr 26;3(2):229-74. doi: 10.3390/pharmaceutics3020229.
4
Multimodal fluorescence-mediated tomography and SPECT/CT for small-animal imaging.
J Nucl Med. 2013 Apr;54(4):639-46. doi: 10.2967/jnumed.112.105742. Epub 2013 Feb 27.
6
FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.
Nat Methods. 2012 Jun;9(6):615-20. doi: 10.1038/nmeth.2014. Epub 2012 May 6.
7
Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging.
Biomed Opt Express. 2011 Dec 1;2(12):3267-77. doi: 10.1364/BOE.2.003267. Epub 2011 Nov 8.
8
Quantitative fluorescence tomography using a trimodality system: in vivo validation.
J Biomed Opt. 2010 Jul-Aug;15(4):040503. doi: 10.1117/1.3467495.

本文引用的文献

1
Imaging of glioma tumor with endogenous fluorescence tomography.
J Biomed Opt. 2009 May-Jun;14(3):030501. doi: 10.1117/1.3127202.
4
Quantitative fluorescence tomography with functional and structural a priori information.
Appl Opt. 2009 Mar 1;48(7):1328-36. doi: 10.1364/ao.48.001328.
6
Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue.
Rev Sci Instrum. 2008 Jun;79(6):064302. doi: 10.1063/1.2919131.
7
Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX.
Opt Express. 2008 Jun 9;16(12):8581-93. doi: 10.1364/oe.16.008581.
8
Diffuse optical tomography guided quantitative fluorescence molecular tomography.
Appl Opt. 2008 Apr 20;47(12):2011-6. doi: 10.1364/ao.47.002011.
9
In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography.
J Biomed Opt. 2008 Jan-Feb;13(1):011008. doi: 10.1117/1.2884505.
10
The role of hybrid SPECT-CT in oncology: current and emerging clinical applications.
Clin Radiol. 2008 Mar;63(3):241-51. doi: 10.1016/j.crad.2007.11.008. Epub 2008 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验