Key Laboratory of Biorheological Science and Technology Under Ministry of Education, 111 Project Laboratory of Biomechanics and Tissue Repair, and Bioengineering College, Chongqing University, Chongqing 400044, China.
J Comput Aided Mol Des. 2011 Oct;25(10):947-58. doi: 10.1007/s10822-011-9474-5. Epub 2011 Oct 1.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains. Characterizing the interaction interface of domain-peptide complexes and analyzing binding specificity for modular domains are critical for deciphering protein-protein interaction networks. In this article, we report the successful use of an integrated computational protocol to dissect the energetic profile and structural basis of peptide binding to third PDZ domain (PDZ3) from the PSD-95 protein. This protocol employs rigorous quantum mechanics/molecular mechanics (QM/MM), semi-empirical Poisson-Boltzmann/surface area (PB/SA), and empirical conformational free energy analysis (CFEA) to quantitatively describe and decompose systematic energy changes arising from, respectively, noncovalent interaction, desolvation effect, and conformational entropy loss associated with the formation of 30 affinity-known PDZ3-peptide complexes. We show that the QM/MM-, PB/SA-, and CFEA-derived energy components can work together fairly well in reproducing experimentally measured affinity after a linearly weighting treatment, albeit they are not compatible with each other directly. We also demonstrate that: (1) noncovalent interaction and desolvation effect donate, respectively, stability and specificity to complex architecture, while entropy loss contributes modestly to binding; (2) P(0) and P(-2) of peptide ligand are the most important positions for determining both the stability and specificity of the PDZ3-peptide complex, P(-1) and P(-3) can confer substantial stability (but not specificity) for the complex, and N-terminal P(-4) and P(-5) have only a very limited effect on binding.
蛋白质-蛋白质相互作用,特别是弱的和短暂的相互作用,通常由肽识别结构域介导。表征结构域-肽复合物的相互作用界面,并分析模块结构域的结合特异性,对于破译蛋白质-蛋白质相互作用网络至关重要。在本文中,我们报告了成功使用综合计算方案来剖析 PSD-95 蛋白的第三个 PDZ 结构域(PDZ3)与肽结合的能量特征和结构基础。该方案采用严格的量子力学/分子力学(QM/MM)、半经验泊松-玻尔兹曼/表面积(PB/SA)和经验构象自由能分析(CFEA),分别定量描述和分解与 30 个亲和力已知的 PDZ3-肽复合物形成相关的非共价相互作用、去溶剂化效应和构象熵损失引起的系统能量变化。我们表明,QM/MM、PB/SA 和 CFEA 衍生的能量分量在经过线性加权处理后,可以很好地共同再现实验测量的亲和力,尽管它们彼此之间不直接兼容。我们还证明:(1)非共价相互作用和去溶剂化效应分别为复合物结构提供稳定性和特异性,而熵损失对结合的贡献较小;(2)肽配体的 P(0)和 P(-2)是决定 PDZ3-肽复合物稳定性和特异性的最重要位置,P(-1)和 P(-3)可以为复合物提供相当大的稳定性(但不是特异性),而 N 端的 P(-4)和 P(-5)对结合的影响非常有限。