Suppr超能文献

通过计算机模拟鉴定和设计针对突触后密度蛋白 (PSD-95) PDZ-3 结构域的有效肽抑制剂。

In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95).

机构信息

a Laboratory of Computational Biology and Bioinformatics, Division of Molecular and Structural Biology , CSIR-Central Drug Research Institute , Lucknow 226031 , India.

b Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Drug Research Institute , Campus, Lucknow 226031 , India.

出版信息

J Biomol Struct Dyn. 2019 Mar;37(5):1241-1253. doi: 10.1080/07391102.2018.1454851. Epub 2018 Apr 11.

Abstract

Unique intrinsic properties of peptides like low toxicity, high biological activity, and specificity make them attractive therapeutic agents. PDZ-binding peptide inhibitors have been demonstrated for curing of Alzheimer, Parkinson, Dementia, and other central nervous system ailments. In this article, we report the successful use of an integrated computational protocol to analyze the structural basis of how peptides bind to the shallow groove of the third PDZ domain (PDZ-3) from the postsynaptic density (PSD-95) protein. This protocol employs careful and precise computational techniques for design of new strategy for predicting novel and potent peptides against PDZ protein. We attempted to generate a pharmacophore model using crystal structure of peptide inhibitor bound to the PDZ-3. A highly specific and sensitive generated pharmacophore model was used for screening virtual database generated using different combination of amino acid substitutions as well as decoy peptide database for its sensitivity and specificity. Identified hit peptides were further analyzed by docking studies, and their stability analyzed using solvated molecular dynamics. Quantum Mechanics/Molecular Mechanics (QM/MM) interaction energy and GMX-PBSA scoring schemes were used for ranking of stable peptides. Computational approach applied here generated encouraging results for identifying peptides against PDZ interaction model. The workflow can be further exercised as a virtual screening technique for reducing the search space for candidate target peptides against PDZ domains.

摘要

肽类具有低毒性、高生物活性和特异性等独特的内在特性,使其成为有吸引力的治疗剂。PDZ 结合肽抑制剂已被证明可用于治疗阿尔茨海默病、帕金森病、痴呆症和其他中枢神经系统疾病。在本文中,我们报告了成功使用综合计算方案来分析肽与突触后密度蛋白(PSD-95)的第三个 PDZ 结构域(PDZ-3)浅沟结合的结构基础。该方案采用了精心和精确的计算技术,为预测针对 PDZ 蛋白的新型有效肽设计提供了新策略。我们试图使用与 PDZ-3 结合的肽抑制剂的晶体结构生成药效团模型。使用不同氨基酸取代组合生成的虚拟数据库以及诱饵肽数据库对生成的高特异性和高灵敏度药效团模型进行了筛选,以测试其灵敏度和特异性。对鉴定出的命中肽进行对接研究,并通过溶剂化分子动力学分析其稳定性。使用量子力学/分子力学(QM/MM)相互作用能和 GMX-PBSA 评分方案对稳定肽进行排序。此处应用的计算方法在识别针对 PDZ 相互作用模型的肽方面产生了令人鼓舞的结果。该工作流程可进一步作为虚拟筛选技术,用于缩小针对 PDZ 结构域的候选靶肽的搜索空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验