Suppr超能文献

一种研究生物体系中纳米颗粒相互作用的新方法:使用化学稳定剂将二氧化钛分散在生物相容的介质中。

A new methodology for studying nanoparticle interactions in biological systems: dispersing titania in biocompatible media using chemical stabilisers.

机构信息

Centre for BioNano Interactions, University College Dublin, Ireland.

出版信息

Nanoscale. 2011 Nov;3(11):4617-24. doi: 10.1039/c1nr10488h. Epub 2011 Sep 30.

Abstract

We report here a highly successful and original protocol for the dispersion of nanoparticles in biocompatible fluids for in vitro and in vivo studies of the nanoparticle-biology interaction. Titania is chosen as a suitable model as it is one of the priority materials listed by the OECD and small particles of the anatase structure are extensively used as e.g. photocatalysts in solar cells. Consequently, its delivery into the environment and its interaction with biological organisms is unavoidable. Therefore, its biological effect needs to be understood. In this work, we prepared stable nanoparticle dispersions of anatase aggregates using citrate stabilisations between 45 and 55 nm at concentrations of up to 10 mg mL(-1). The optimum pH for this type of suspension was 7, resulting in ζ-potentials of approximately -50 mV. The stabilised aggregates were the subject of dialysis to produce stable dispersions without the chemical stabiliser, thus allowing studies in the absence of potentially toxic chemicals. Different sizing techniques such as Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and Differential Centrifuge Sedimentation (DCS) were used to characterise the different suspensions. The results obtained with each of these techniques are compared and a critical analysis of the suitability of each technique is given.

摘要

我们在此报告一种非常成功且原创的方案,用于将纳米粒子分散在生物相容性流体中,以便进行纳米粒子-生物学相互作用的体外和体内研究。选择二氧化钛作为合适的模型,因为它是经合组织列出的优先材料之一,并且锐钛矿结构的小颗粒被广泛用作例如太阳能电池中的光催化剂。因此,它向环境中的输送及其与生物有机的相互作用是不可避免的。因此,需要了解其生物效应。在这项工作中,我们使用柠檬酸稳定化作用在 45 至 55nm 之间制备了浓度高达 10mg/mL 的锐钛矿聚集体的稳定纳米粒子分散体。这种悬浮液的最佳 pH 值为 7,导致 ζ-电位约为-50mV。稳定的聚集体是透析的主题,以在没有化学稳定剂的情况下产生稳定的分散体,从而允许在没有潜在有毒化学物质的情况下进行研究。使用不同的粒径测定技术,如动态光散射(DLS)、纳米颗粒跟踪分析(NTA)和差速离心沉降(DCS)来表征不同的悬浮液。对每种技术获得的结果进行了比较,并对每种技术的适用性进行了批判性分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验