Suppr超能文献

KynR 是一种 Lrp/AsnC 型转录调节因子,可直接调控铜绿假单胞菌中的犬尿氨酸途径。

KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa.

机构信息

Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.

出版信息

J Bacteriol. 2011 Dec;193(23):6567-75. doi: 10.1128/JB.05803-11. Epub 2011 Sep 30.

Abstract

The opportunistic pathogen Pseudomonas aeruginosa can utilize a variety of carbon sources and produces many secondary metabolites to help survive harsh environments. P. aeruginosa is part of a small group of bacteria that use the kynurenine pathway to catabolize tryptophan. Through the kynurenine pathway, tryptophan is broken down into anthranilate, which is further degraded into tricarboxylic acid cycle intermediates or utilized to make numerous aromatic compounds, including the Pseudomonas quinolone signal (PQS). We have previously shown that the kynurenine pathway is a critical source of anthranilate for PQS synthesis and that the kynurenine pathway genes (kynA and kynBU) are upregulated in the presence of kynurenine. A putative Lrp/AsnC-type transcriptional regulator (gene PA2082, here called kynR), is divergently transcribed from the kynBU operon and is highly conserved in gram-negative bacteria that harbor the kynurenine pathway. We show that a mutation in kynR renders P. aeruginosa unable to utilize L-tryptophan as a sole carbon source and decreases PQS production. In addition, we found that the increase of kynA and kynB transcriptional activity in response to kynurenine was completely abolished in a kynR mutant, further indicating that KynR mediates the kynurenine-dependent expression of the kynurenine pathway genes. Finally, we found that purified KynR specifically bound the kynA promoter in the presence of kynurenine and bound the kynB promoter in the absence or presence of kynurenine. Taken together, our data show that KynR directly regulates the kynurenine pathway genes.

摘要

机会性病原体铜绿假单胞菌可以利用多种碳源,并产生许多次生代谢物来帮助其在恶劣环境中生存。铜绿假单胞菌是一小部分利用犬尿氨酸途径分解色氨酸的细菌之一。通过犬尿氨酸途径,色氨酸被分解成邻氨基苯甲酸,邻氨基苯甲酸进一步降解为三羧酸循环中间产物,或用于合成许多芳香族化合物,包括铜绿假单胞菌喹诺酮信号(PQS)。我们之前已经表明,犬尿氨酸途径是 PQS 合成的邻氨基苯甲酸的关键来源,并且犬尿氨酸途径基因(kynA 和 kynBU)在犬尿氨酸存在下上调。一个假定的 Lrp/AsnC 型转录调节因子(基因 PA2082,此处称为 kynR),与 kynBU 操纵子反方向转录,并且在具有犬尿氨酸途径的革兰氏阴性菌中高度保守。我们表明,kynR 突变使铜绿假单胞菌无法将 L-色氨酸用作唯一碳源,并降低 PQS 产量。此外,我们发现,在 kynR 突变体中,对犬尿氨酸的响应中 kynA 和 kynB 转录活性的增加完全被消除,这进一步表明 KynR 介导了犬尿氨酸途径基因的犬尿氨酸依赖性表达。最后,我们发现,纯化的 KynR 在存在犬尿氨酸的情况下特异性结合 kynA 启动子,并在不存在或存在犬尿氨酸的情况下结合 kynB 启动子。总之,我们的数据表明 KynR 直接调节犬尿氨酸途径基因。

相似文献

1
KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa.
J Bacteriol. 2011 Dec;193(23):6567-75. doi: 10.1128/JB.05803-11. Epub 2011 Sep 30.
2
Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.
J Bacteriol. 2007 May;189(9):3425-33. doi: 10.1128/JB.00209-07. Epub 2007 Mar 2.
3
Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship.
BMC Microbiol. 2016 Jul 8;16(1):137. doi: 10.1186/s12866-016-0756-x.
5
LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10673-8. doi: 10.1073/pnas.1005909107. Epub 2010 May 24.
6
CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa.
J Bacteriol. 2015 Jun 15;197(12):1988-2002. doi: 10.1128/JB.00246-15. Epub 2015 Apr 6.
7
High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites.
Microbiology (Reading). 2008 Aug;154(Pt 8):2195-2208. doi: 10.1099/mic.0.2007/013680-0.
8
The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production.
Microbiology (Reading). 2013 May;159(Pt 5):959-969. doi: 10.1099/mic.0.063065-0. Epub 2013 Feb 28.
9
Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase.
FEMS Microbiol Lett. 2003 Oct 24;227(2):219-27. doi: 10.1016/S0378-1097(03)00684-0.
10
PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506.
PLoS One. 2017 Dec 8;12(12):e0189331. doi: 10.1371/journal.pone.0189331. eCollection 2017.

引用本文的文献

2
Leveraging dysregulated tumor metabolism for targeting anticancer bacteria.
Sci Adv. 2025 Jun 13;11(24):eads1630. doi: 10.1126/sciadv.ads1630.
4
Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex.
PLoS Genet. 2022 Jun 2;18(6):e1010020. doi: 10.1371/journal.pgen.1010020. eCollection 2022 Jun.
5
The Lrp/AsnC-Type Regulator PA2577 Controls the EamA-like Transporter Gene in .
Int J Mol Sci. 2021 Dec 12;22(24):13340. doi: 10.3390/ijms222413340.
6
A genome-wide approach for identification and characterisation of metabolite-inducible systems.
Nat Commun. 2020 Mar 5;11(1):1213. doi: 10.1038/s41467-020-14941-6.
9
Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C.
J Ind Microbiol Biotechnol. 2018 Apr;45(4):271-279. doi: 10.1007/s10295-018-2011-y. Epub 2018 Feb 7.
10
PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506.
PLoS One. 2017 Dec 8;12(12):e0189331. doi: 10.1371/journal.pone.0189331. eCollection 2017.

本文引用的文献

1
Quantifying the dynamics of bacterial secondary metabolites by spectral multiphoton microscopy.
ACS Chem Biol. 2011 Sep 16;6(9):893-9. doi: 10.1021/cb200094w. Epub 2011 Jul 15.
2
Serine proteases degrade airway mucins in cystic fibrosis.
Infect Immun. 2011 Aug;79(8):3438-44. doi: 10.1128/IAI.01252-10. Epub 2011 Jun 6.
3
Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis.
Paediatr Respir Rev. 2010 Sep;11(3):177-84. doi: 10.1016/j.prrv.2010.05.003. Epub 2010 Jun 16.
4
LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10673-8. doi: 10.1073/pnas.1005909107. Epub 2010 May 24.
5
Secondary metabolomics: natural products mass spectrometry goes global.
ACS Chem Biol. 2009 Aug 21;4(8):599-601. doi: 10.1021/cb900187p.
6
Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR.
Mol Microbiol. 2009 Sep;73(6):1072-85. doi: 10.1111/j.1365-2958.2009.06832.x. Epub 2009 Aug 11.
8
Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum.
J Bacteriol. 2007 Nov;189(22):8079-87. doi: 10.1128/JB.01138-07. Epub 2007 Sep 14.
9
RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria.
RNA. 2007 Aug;13(8):1141-54. doi: 10.1261/rna.620507. Epub 2007 Jun 29.
10
Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.
J Bacteriol. 2007 May;189(9):3425-33. doi: 10.1128/JB.00209-07. Epub 2007 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验