Suppr超能文献

色氨酸营养缺陷型中的保守抑制突变导致铜绿假单胞菌喹诺酮信号合成失调。

A conserved suppressor mutation in a tryptophan auxotroph results in dysregulation of Pseudomonas quinolone signal synthesis.

机构信息

Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA.

Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA

出版信息

J Bacteriol. 2014 Jul;196(13):2413-22. doi: 10.1128/JB.01635-14. Epub 2014 Apr 18.

Abstract

Pseudomonas aeruginosa is a common nosocomial pathogen that relies on three cell-to-cell signals to regulate multiple virulence factors. The Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone) is one of these signals, and it is known to be important for P. aeruginosa pathogenesis. PQS is synthesized in a multistep reaction that condenses anthranilate and a fatty acid. In P. aeruginosa, anthranilate is produced via the kynurenine pathway and two separate anthranilate synthases, TrpEG and PhnAB, the latter of which is important for PQS synthesis. Others have previously shown that a P. aeruginosa tryptophan auxotroph could grow on tryptophan-depleted medium with a frequency of 10(-5) to 10(-6). These revertants produced more pyocyanin and had increased levels of phnA transcript. In this study, we constructed similar tryptophan auxotroph revertants and found that the reversion resulted from a synonymous G-to-A nucleotide mutation within pqsC. This change resulted in increased pyocyanin and decreased PQS, along with an increase in the level of the pqsD, pqsE, and phnAB transcripts. Reporter fusion and reverse transcriptase PCR studies indicated that a novel transcript containing pqsD, pqsE, and phnAB occurs in these revertants, and quantitative real-time PCR experiments suggested that the same transcript appears in the wild-type strain under nutrient-limiting conditions. These results imply that the PQS biosynthetic operon can produce an internal transcript that increases anthranilate production and greatly elevates the expression of the PQS signal response protein PqsE. This suggests a novel mechanism to ensure the production of both anthranilate and PQS-controlled virulence factors.

摘要

铜绿假单胞菌是一种常见的医院病原体,它依赖三种细胞间信号来调节多种毒力因子。铜绿假单胞菌喹诺酮信号(PQS;2-庚基-3-羟基-4-喹诺酮)就是其中一种信号,它对铜绿假单胞菌的发病机制很重要。PQS 的合成需要经过多步反应,缩合邻氨基苯甲酸和脂肪酸。在铜绿假单胞菌中,邻氨基苯甲酸是通过犬尿氨酸途径和两种独立的邻氨基苯甲酸合酶 TrpEG 和 PhnAB 产生的,后者对 PQS 的合成很重要。之前其他人已经表明,铜绿假单胞菌色氨酸营养缺陷型可以在色氨酸耗尽的培养基中以 10(-5) 到 10(-6) 的频率生长。这些回复突变体产生更多的绿脓菌素,并且 phnA 转录本水平增加。在这项研究中,我们构建了类似的色氨酸营养缺陷型回复突变体,发现回复突变是由于 pqsC 内的一个同义 G 到 A 核苷酸突变引起的。这种变化导致绿脓菌素增加,PQS 减少,同时 pqsD、pqsE 和 phnAB 转录本水平增加。报告基因融合和反转录 PCR 研究表明,这些回复突变体中存在一种含有 pqsD、pqsE 和 phnAB 的新转录本,定量实时 PCR 实验表明,在营养限制条件下,野生型菌株中也出现了相同的转录本。这些结果表明,PQS 生物合成操纵子可以产生一种内部转录本,增加邻氨基苯甲酸的产生,并极大地提高 PQS 信号反应蛋白 PqsE 的表达。这表明了一种新的机制,可以确保邻氨基苯甲酸和 PQS 控制的毒力因子的产生。

相似文献

2
The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production.
Microbiology (Reading). 2013 May;159(Pt 5):959-969. doi: 10.1099/mic.0.063065-0. Epub 2013 Feb 28.
3
Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal.
J Bacteriol. 2007 May;189(9):3425-33. doi: 10.1128/JB.00209-07. Epub 2007 Mar 2.
5
Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa.
Mol Cells. 2011 Jul;32(1):57-65. doi: 10.1007/s10059-011-2322-6. Epub 2011 May 23.
6
Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11633-7. doi: 10.1073/pnas.201328498.
8
PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system.
J Bacteriol. 2008 Nov;190(21):7043-51. doi: 10.1128/JB.00753-08. Epub 2008 Sep 5.
9
Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase.
J Bacteriol. 2008 Feb;190(4):1247-55. doi: 10.1128/JB.01140-07. Epub 2007 Dec 14.

引用本文的文献

1
Relationship between Pyochelin and Quinolone Signal in : A Direction for Future Research.
Int J Mol Sci. 2024 Aug 7;25(16):8611. doi: 10.3390/ijms25168611.
3
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens.
Microbiol Spectr. 2021 Sep 3;9(1):e0040421. doi: 10.1128/Spectrum.00404-21. Epub 2021 Aug 11.
4
Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in .
Pathogens. 2020 Nov 24;9(12):980. doi: 10.3390/pathogens9120980.
5
Contribution of the Alkylquinolone Quorum-Sensing System to the Interaction of With Bronchial Epithelial Cells.
Front Microbiol. 2018 Dec 18;9:3018. doi: 10.3389/fmicb.2018.03018. eCollection 2018.
6
The PqsE and RhlR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in .
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):E9411-E9418. doi: 10.1073/pnas.1814023115. Epub 2018 Sep 17.
8
Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection.
Am J Respir Crit Care Med. 2018 Mar 15;197(6):708-727. doi: 10.1164/rccm.201705-1043SO.
9
Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa.
PLoS Pathog. 2016 Nov 16;12(11):e1006029. doi: 10.1371/journal.ppat.1006029. eCollection 2016 Nov.
10
Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship.
BMC Microbiol. 2016 Jul 8;16(1):137. doi: 10.1186/s12866-016-0756-x.

本文引用的文献

1
2
The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production.
Microbiology (Reading). 2013 May;159(Pt 5):959-969. doi: 10.1099/mic.0.063065-0. Epub 2013 Feb 28.
3
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
Brief Bioinform. 2013 Mar;14(2):178-92. doi: 10.1093/bib/bbs017. Epub 2012 Apr 19.
4
Joint genotyping on the fly: identifying variation among a sequenced panel of inbred lines.
Genome Res. 2012 May;22(5):966-74. doi: 10.1101/gr.129122.111. Epub 2012 Feb 23.
5
The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.
PLoS One. 2012;7(2):e31092. doi: 10.1371/journal.pone.0031092. Epub 2012 Feb 3.
6
KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa.
J Bacteriol. 2011 Dec;193(23):6567-75. doi: 10.1128/JB.05803-11. Epub 2011 Sep 30.
7
Integrative genomics viewer.
Nat Biotechnol. 2011 Jan;29(1):24-6. doi: 10.1038/nbt.1754.
8
Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes.
Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600. doi: 10.1093/nar/gkq869. Epub 2010 Oct 6.
9
Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis.
Paediatr Respir Rev. 2010 Sep;11(3):177-84. doi: 10.1016/j.prrv.2010.05.003. Epub 2010 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验