Blum J J, Lawler G, Reed M, Shin I
Department of Cell Biology, Duke University, Durham, North Carolina 27706.
Biophys J. 1989 Nov;56(5):995-1005. doi: 10.1016/S0006-3495(89)82744-4.
A method is presented for determining the retardation of diffusion of particles inside cells owing to cytoskeletal barriers. The cytoskeletal meshwork is treated as a repeating periodic two-dimensional or three-dimensional lattice composed of elements of given size, shape, and spacing. We derive an analytic expression for the diffusion coefficient relative to that of the cytosol. This expression is evaluated by solving numerically an appropriate boundary-value problem for the Laplace equation. For the two-dimensional case, e.g., diffusion in a membrane, the results are quantitatively similar to those obtained by Saxton (1987. Biophys. J. 52:989-997) using Monte Carlo methods. The three-dimensional results are quantitatively similar to experimental results reported by Luby-Phelps et al. (1987. Proc. Natl. Acad. Sci. USA. 84:4910-4913) for the diffusion of dextran and Ficoll particles in Swiss 3T3 cells. By accounting for geometrical factors, these results allow one to assess the relative contributions of geometrical hindrance and of binding to the cytoskeletal lattice from measurements of intracellular diffusion coefficients of proteins.
本文提出了一种确定由于细胞骨架屏障导致的细胞内颗粒扩散延迟的方法。细胞骨架网络被视为由给定大小、形状和间距的元件组成的重复周期性二维或三维晶格。我们推导了相对于细胞质溶胶扩散系数的扩散系数的解析表达式。通过对拉普拉斯方程求解适当的边值问题来评估该表达式。例如,对于二维情况,即膜中的扩散,结果在数量上与萨克斯顿(1987年,《生物物理杂志》52:989 - 997)使用蒙特卡罗方法获得的结果相似。三维结果在数量上与卢比 - 费尔普斯等人(1987年,《美国国家科学院院刊》84:4910 - 4913)报道的葡聚糖和菲可粒子在瑞士3T3细胞中扩散的实验结果相似。通过考虑几何因素,这些结果使人们能够从蛋白质细胞内扩散系数的测量中评估几何阻碍和与细胞骨架晶格结合的相对贡献。