Suppr超能文献

细胞骨架几何结构对细胞内扩散的影响。

Effect of cytoskeletal geometry on intracellular diffusion.

作者信息

Blum J J, Lawler G, Reed M, Shin I

机构信息

Department of Cell Biology, Duke University, Durham, North Carolina 27706.

出版信息

Biophys J. 1989 Nov;56(5):995-1005. doi: 10.1016/S0006-3495(89)82744-4.

Abstract

A method is presented for determining the retardation of diffusion of particles inside cells owing to cytoskeletal barriers. The cytoskeletal meshwork is treated as a repeating periodic two-dimensional or three-dimensional lattice composed of elements of given size, shape, and spacing. We derive an analytic expression for the diffusion coefficient relative to that of the cytosol. This expression is evaluated by solving numerically an appropriate boundary-value problem for the Laplace equation. For the two-dimensional case, e.g., diffusion in a membrane, the results are quantitatively similar to those obtained by Saxton (1987. Biophys. J. 52:989-997) using Monte Carlo methods. The three-dimensional results are quantitatively similar to experimental results reported by Luby-Phelps et al. (1987. Proc. Natl. Acad. Sci. USA. 84:4910-4913) for the diffusion of dextran and Ficoll particles in Swiss 3T3 cells. By accounting for geometrical factors, these results allow one to assess the relative contributions of geometrical hindrance and of binding to the cytoskeletal lattice from measurements of intracellular diffusion coefficients of proteins.

摘要

本文提出了一种确定由于细胞骨架屏障导致的细胞内颗粒扩散延迟的方法。细胞骨架网络被视为由给定大小、形状和间距的元件组成的重复周期性二维或三维晶格。我们推导了相对于细胞质溶胶扩散系数的扩散系数的解析表达式。通过对拉普拉斯方程求解适当的边值问题来评估该表达式。例如,对于二维情况,即膜中的扩散,结果在数量上与萨克斯顿(1987年,《生物物理杂志》52:989 - 997)使用蒙特卡罗方法获得的结果相似。三维结果在数量上与卢比 - 费尔普斯等人(1987年,《美国国家科学院院刊》84:4910 - 4913)报道的葡聚糖和菲可粒子在瑞士3T3细胞中扩散的实验结果相似。通过考虑几何因素,这些结果使人们能够从蛋白质细胞内扩散系数的测量中评估几何阻碍和与细胞骨架晶格结合的相对贡献。

相似文献

1
Effect of cytoskeletal geometry on intracellular diffusion.
Biophys J. 1989 Nov;56(5):995-1005. doi: 10.1016/S0006-3495(89)82744-4.
2
Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.
Biophys J. 1990 Jul;58(1):31-43. doi: 10.1016/S0006-3495(90)82351-1.
3
Diffusion of molecules on biological membranes of nonplanar form. II. Diffusion anisotropy.
Biophys J. 1985 Oct;48(4):543-6. doi: 10.1016/S0006-3495(85)83811-X.
4
Percolation model of ionic channel dynamics.
Biophys J. 1990 Mar;57(3):681-4. doi: 10.1016/S0006-3495(90)82588-1.
5
Anomalous fluctuations in sliding motion of cytoskeletal filaments driven by molecular motors: model simulations.
J Phys Chem B. 2008 Feb 7;112(5):1487-93. doi: 10.1021/jp074838l. Epub 2008 Jan 12.
7
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
9
Diffusional screening in the human pulmonary acinus.
J Appl Physiol (1985). 2003 May;94(5):2010-6. doi: 10.1152/japplphysiol.00913.2002.
10
Proton diffusion along biological membranes.
J Phys Condens Matter. 2011 Jun 15;23(23):234103. doi: 10.1088/0953-8984/23/23/234103. Epub 2011 May 25.

引用本文的文献

1
Partitioning of ribonucleoprotein complexes from the cellular actin cortex.
Sci Adv. 2022 Aug 19;8(33):eabj3236. doi: 10.1126/sciadv.abj3236.
2
Multiscale modeling of presynaptic dynamics from molecular to mesoscale.
PLoS Comput Biol. 2022 May 9;18(5):e1010068. doi: 10.1371/journal.pcbi.1010068. eCollection 2022 May.
3
High rates of calcium-free diffusion in the cytosol of living cells.
Biophys J. 2021 Sep 21;120(18):3960-3972. doi: 10.1016/j.bpj.2021.08.019. Epub 2021 Aug 26.
4
Diffusion on Membrane Domes, Tubes, and Pearling Structures.
Biophys J. 2021 Feb 2;120(3):424-431. doi: 10.1016/j.bpj.2020.12.014. Epub 2020 Dec 24.
5
Filament Rigidity Vies with Mesh Size in Determining Anomalous Diffusion in Cytoskeleton.
Biomacromolecules. 2019 Dec 9;20(12):4380-4388. doi: 10.1021/acs.biomac.9b01057. Epub 2019 Nov 15.
6
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.
Bull Math Biol. 2019 Aug;81(8):2960-3009. doi: 10.1007/s11538-018-0443-1. Epub 2018 May 21.
7
Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers.
Biophys J. 2014 Feb 18;106(4):780-92. doi: 10.1016/j.bpj.2013.12.044.
8
Spatial simulations in systems biology: from molecules to cells.
Int J Mol Sci. 2012;13(6):7798-7827. doi: 10.3390/ijms13067798. Epub 2012 Jun 21.
9
Effects of macromolecular crowding on intracellular diffusion from a single particle perspective.
Biophys Rev. 2010 Feb;2(1):39-53. doi: 10.1007/s12551-010-0029-0. Epub 2010 Feb 6.
10
Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.
Biophys J. 2010 Aug 4;99(3):808-16. doi: 10.1016/j.bpj.2010.04.067.

本文引用的文献

2
The translational mobility of substances within the cytoplasmic matrix.
Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747-51. doi: 10.1073/pnas.81.21.6747.
3
Diffusion of a small molecule in the cytoplasm of mammalian cells.
Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414-8. doi: 10.1073/pnas.81.11.3414.
5
The molecular biology of Euglena gracilis. V. Enzyme localization.
Exp Cell Res. 1968 Jul;51(1):150-6. doi: 10.1016/0014-4827(68)90165-1.
6
The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it.
Proc Natl Acad Sci U S A. 1985 Aug;82(15):5030-4. doi: 10.1073/pnas.82.15.5030.
7
Concentration dependence of protein diffusion.
Biophys J. 1987 Jul;52(1):137-9. doi: 10.1016/S0006-3495(87)83199-5.
8
Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells.
Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910-3. doi: 10.1073/pnas.84.14.4910.
9
Lateral diffusion in an archipelago. The effect of mobile obstacles.
Biophys J. 1987 Dec;52(6):989-97. doi: 10.1016/S0006-3495(87)83291-5.
10
Two classes of actin microfilaments are associated with the inner cytoskeleton of axons.
J Cell Biol. 1988 Aug;107(2):613-21. doi: 10.1083/jcb.107.2.613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验