Suppr超能文献

转化生长因子-β(TGF-β)重塑肿瘤相关成纤维细胞的代谢以促进肿瘤生长:将 TGF-β 信号与“Warburg-like”肿瘤代谢和 L-乳酸生成联系起来。

Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.

机构信息

The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Cell Cycle. 2012 Aug 15;11(16):3019-35. doi: 10.4161/cc.21384. Epub 2012 Aug 9.

Abstract

We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment.

摘要

我们之前已经表明,基质 Cav-1 的缺失是乳腺癌预后不良的一个生物标志物。从机制上讲,Cav-1 的缺失会诱导基质细胞的代谢重编程,导致自噬/线粒体自噬、线粒体功能障碍和有氧糖酵解增加。因此,Cav-1 低表达的 CAF 会产生营养物质(如 L-乳酸)和化学构建块,为线粒体代谢和相邻乳腺癌细胞的合成代谢生长提供燃料。此外,已知 Cav-1 的缺失与 TGF-β 信号的过度激活有关。然而,TGF-β 信号通路的过度激活是否导致 Cav-1 低表达 CAF 的代谢重编程仍然未知。为了解决这些问题,我们在基质成纤维细胞和乳腺癌细胞中过表达 TGF-β 配体和 TGF-β 受体 I(TGFβ-RI)。在这里,我们表明 TGF-β 在肿瘤发生中的作用具有特定的隔室特异性,并且 TGF-β 通过将癌相关成纤维细胞转向分解代谢来促进肿瘤发生。重要的是,TGF-β 的促肿瘤作用与产生 TGF-β 的细胞类型无关。因此,基质衍生的 TGF-β 以自分泌的方式激活基质细胞中的信号,导致成纤维细胞激活,表现为肌成纤维细胞标志物表达增加,以及代谢重编程,向分解代谢和氧化应激转变。我们还表明,TGF-β 激活的成纤维细胞促进相邻癌细胞的线粒体活性,并且在异种移植模型中,独立于血管生成增强乳腺癌细胞的生长。相反,癌细胞中 TGF-β 途径的激活不会影响肿瘤生长,但癌细胞衍生的 TGF-β 配体以旁分泌的方式影响基质细胞,导致成纤维细胞激活和增强的肿瘤生长。总之,基质细胞中 TGF-β 途径的配体依赖性或细胞自主性激活会诱导其代谢重编程,增加氧化应激、自噬/线粒体自噬和糖酵解,并下调 Cav-1。这些代谢改变可以在相邻的成纤维细胞中传播,并极大地维持乳腺癌细胞的生长。我们的数据为 TGF-β 途径在乳腺癌发生中的作用提供了新的见解,并在 TGF-β 信号的促肿瘤作用与肿瘤微环境的代谢重编程之间建立了明确的因果关系。

相似文献

5
Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.

引用本文的文献

5
Cancer associated fibroblasts in cancer development and therapy.
J Hematol Oncol. 2025 Mar 28;18(1):36. doi: 10.1186/s13045-025-01688-0.
6
Invasion and metastasis in cancer: molecular insights and therapeutic targets.
Signal Transduct Target Ther. 2025 Feb 21;10(1):57. doi: 10.1038/s41392-025-02148-4.
8
Metabolic Signaling in the Tumor Microenvironment.
Cancers (Basel). 2025 Jan 6;17(1):155. doi: 10.3390/cancers17010155.
10
Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer.
Nat Genet. 2025 Jan;57(1):126-139. doi: 10.1038/s41588-024-01998-y. Epub 2024 Dec 10.

本文引用的文献

1
TGF-β signaling in development and disease.
FEBS Lett. 2012 Jul 4;586(14):1833. doi: 10.1016/j.febslet.2012.05.030. Epub 2012 May 28.
3
Power surge: supporting cells "fuel" cancer cell mitochondria.
Cell Metab. 2012 Jan 4;15(1):4-5. doi: 10.1016/j.cmet.2011.12.011.
4
Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms.
Annu Rev Pathol. 2012;7:423-67. doi: 10.1146/annurev-pathol-011811-120856. Epub 2011 Nov 7.
7
Cell biology. The TASCC of secretion.
Science. 2011 May 20;332(6032):923-5. doi: 10.1126/science.1207552.
8
Spatial coupling of mTOR and autophagy augments secretory phenotypes.
Science. 2011 May 20;332(6032):966-70. doi: 10.1126/science.1205407. Epub 2011 Apr 21.
9
Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51. doi: 10.1016/j.biocel.2011.01.023. Epub 2011 Feb 15.
10
Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20009-14. doi: 10.1073/pnas.1013805107. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验