Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Hedley Way, OX3 9DU, Oxford, UK.
Circulation. 2011 Oct 25;124(17):1860-70. doi: 10.1161/CIRCULATIONAHA.111.029272. Epub 2011 Oct 3.
The endothelial nitric oxide synthase cofactor tetrahydrobiopterin (BH4) is essential for maintenance of enzymatic function. We hypothesized that induction of BH4 synthesis might be an endothelial defense mechanism against inflammation in vascular disease states.
In Study 1, 20 healthy individuals were randomized to receive Salmonella typhi vaccine (a model of acute inflammation) or placebo in a double-blind study. Vaccination increased circulating BH4 and interleukin 6 and induced endothelial dysfunction (as evaluated by brachial artery flow-mediated dilation) after 8 hours. In Study 2, a functional haplotype (X haplotype) in the GCH1 gene, encoding GTP-cyclohydrolase I, the rate-limiting enzyme in biopterin biosynthesis, was associated with endothelial dysfunction in the presence of high-sensitivity C-reactive protein in 440 coronary artery disease patients. In Study 3, 10 patients with coronary artery disease homozygotes for the GCH1 X haplotype (XX) and 40 without the haplotype (OO) underwent S Typhi vaccination. XX patients were unable to increase plasma BH4 and had a greater reduction of flow-mediated dilation than OO patients. In Study 4, vessel segments from 19 patients undergoing coronary bypass surgery were incubated with or without cytokines (interleukin-6/tumor necrosis factor-α/lipopolysaccharide) for 24 hours. Cytokine stimulation upregulated GCH1 expression, increased vascular BH4, and improved vasorelaxation in response to acetylcholine, which was inhibited by the GTP-cyclohydrolase inhibitor 2,4-diamino-6-hydroxypyrimidine.
The ability to increase vascular GCH1 expression and BH4 synthesis in response to inflammation preserves endothelial function in inflammatory states. These novel findings identify BH4 as a vascular defense mechanism against inflammation-induced endothelial dysfunction.
内皮型一氧化氮合酶辅因子四氢生物蝶呤(BH4)对于维持酶的功能至关重要。我们假设,BH4 合成的诱导可能是血管疾病状态下炎症的内皮防御机制。
在研究 1 中,20 名健康个体被随机分配接受伤寒沙门氏菌疫苗(急性炎症模型)或安慰剂的双盲研究。接种疫苗后 8 小时,循环 BH4 和白细胞介素 6 增加,并诱导内皮功能障碍(如肱动脉血流介导的扩张评估)。在研究 2 中,编码四氢生物蝶呤生物合成限速酶 GTP-环化水解酶 I 的 GCH1 基因中的功能性单倍型(X 单倍型)与 440 例冠心病患者高敏 C 反应蛋白存在时的内皮功能障碍相关。在研究 3 中,10 名冠心病 GCH1 X 单倍型纯合子(XX)患者和 40 名无单倍型患者(OO)接受 S Typhi 疫苗接种。XX 患者无法增加血浆 BH4,并且血流介导的扩张减少幅度大于 OO 患者。在研究 4 中,来自 19 名接受冠状动脉旁路手术的患者的血管段在有或没有细胞因子(白细胞介素 6/肿瘤坏死因子-α/脂多糖)的情况下孵育 24 小时。细胞因子刺激上调 GCH1 表达,增加血管 BH4,并改善对乙酰胆碱的血管舒张反应,而 GTP-环化水解酶抑制剂 2,4-二氨基-6-羟基嘧啶则抑制了这种反应。
在炎症状态下,增加血管 GCH1 表达和 BH4 合成的能力可维持内皮功能。这些新发现将 BH4 确定为对抗炎症诱导的内皮功能障碍的血管防御机制。