Almeida Érika V, Lugon Marcelo di M V, da Silva José L, Fukumori Neuza T O, de Pereira Nilda P S, Matsuda Margareth M N
Radiopharmacy Center, Nuclear Energy and Research Institute, São Paulo, Brazil.
J Nucl Med Technol. 2011 Dec;39(4):307-11. doi: 10.2967/jnmt.111.087437. Epub 2011 Oct 3.
The aim of this work was to develop a selective method for quantification of Sn(II) and Sn(IV) in dimercaptosuccinic acid (DMSA), ethylcysteinate dimer (ECD), methylenediphosphonic acid (MDP), and pyrophosphate radiopharmaceutical cold kits by differential pulse polarography.
A dripping mercury electrode 150 polarographic/stripping analyzer with a conventional 3-electrode configuration was used with 3 M H(2)SO(4) and 3 M HCl supporting electrolytes for Sn(II) and Sn(IV), respectively. The polarographic analysis was performed using a 1-s drop time, 50-mV·s(-1) scan rate, -50-mV pulse amplitude, 40-ms pulse time, and 10-mV step amplitude. To quantify Sn(IV), oxidation of Sn(II) by H(2)O(2) was performed. The calibration curves for Sn(II) and Sn(IV) were obtained in the range of 0-10 μg·mL(-1).
The analytic curves for Sn(II) in 3 M H(2)SO(4) and Sn(IV) in 3 M HCl were represented by the following equations: i (μA) = 0.098 [Sn(II)] + 0.018 (r(2) = 0.998) and i (μA) = 0.092 [Sn(IV)] + 0.016 (r(2) = 0.998), respectively. The detection limits were 0.21 μg·mL(-1) for Sn(II) and 0.15 μg·mL(-1) for Sn(IV). In DMSA, ECD, MDP, and pyrophosphate, 90.0%, 64.9%, 93.2%, and 87.5%, respectively, of the tin was present as Sn(II). In this work, selective determination of Sn(II) and Sn(IV) was achieved using 2 supporting electrolytes (H(2)SO(4) and HCl). In 3 M H(2)SO(4), only Sn(II) produced a polarographic wave with the maximum current in -370 mV. Under the same conditions, no current could be determined for Sn(IV). In 3 M HCl, Sn(II) and Sn(IV) were electroactive and the maximum currents of the 2 waves appeared in -250 and -470 mV. No other components of the lyophilized reagents had any influence.
The developed polarographic method was adequate to quantify Sn(II) and Sn(IV) in DMSA, ECD, MDP, and pyrophosphate cold kits.
本研究的目的是开发一种通过差分脉冲极谱法选择性定量二巯基丁二酸(DMSA)、乙胱氨酸二聚体(ECD)、亚甲基二膦酸(MDP)和焦磷酸盐放射性药物冷试剂盒中Sn(II)和Sn(IV)的方法。
使用具有传统三电极配置的滴汞电极150极谱/溶出分析仪,分别以3 M H₂SO₄和3 M HCl作为Sn(II)和Sn(IV)的支持电解质。极谱分析采用1秒滴汞时间、50 mV·s⁻¹扫描速率、-50 mV脉冲幅度、40 ms脉冲时间和10 mV步幅幅度进行。为了定量Sn(IV),通过H₂O₂将Sn(II)氧化。在0 - 10 μg·mL⁻¹范围内获得了Sn(II)和Sn(IV)的校准曲线。
3 M H₂SO₄中Sn(II)和3 M HCl中Sn(IV)的分析曲线分别由以下方程表示:i(μA) = 0.098 [Sn(II)] + 0.018(r² = 0.998)和i(μA) = 0.092 [Sn(IV)] + 0.016(r² = 0.998)。Sn(II)的检测限为0.21 μg·mL⁻¹,Sn(IV)的检测限为0.15 μg·mL⁻¹。在DMSA、ECD、MDP和焦磷酸盐中,分别有90.0%、64.9%、93.2%和87.5%的锡以Sn(II)形式存在。在本研究中,使用两种支持电解质(H₂SO₄和HCl)实现了对Sn(II)和Sn(IV)的选择性测定。在3 M H₂SO₄中,只有Sn(II)产生极谱波,最大电流出现在 - 370 mV。在相同条件下,未检测到Sn(IV)的电流。在3 M HCl中,Sn(II)和Sn(IV)具有电活性,两个波的最大电流分别出现在 - 250 mV和 - 470 mV。冻干试剂的其他成分没有任何影响。
所开发的极谱法足以定量DMSA、ECD、MDP和焦磷酸盐冷试剂盒中的Sn(II)和Sn(IV)。