Suppr超能文献

用协同作用模拟自然手和人工手。

Modelling natural and artificial hands with synergies.

机构信息

Interdepartmental Research Center E. Piaggio, University of Pisa, Via Diotisalvi, 2, 56126 Pisa, Italy.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3153-61. doi: 10.1098/rstb.2011.0152.

Abstract

We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.

摘要

我们报告了最近在模拟自然和人工手抓取和主动触觉过程方面的工作。从人类手部关于更频繁使用模式中自由度相关性的观察(姿势协同)出发,我们考虑了一个几何模型的含义,该模型可以解释这些数据,并且适用于在与被抓取物体实际接触之前塑造手时发生的预抓取阶段。为了将协同模型的适用性扩展到研究实际抓取中的力分布,我们引入了一个包括手部肌肉骨骼系统机械顺应性的改进模型。该模型的数值结果表明,从预抓取姿势数据中观察到的相同主要协同作用对于实现适当的抓取力分布也是基本的。为了说明触觉感知双域中协同的概念,我们回顾了如何利用触觉的复杂性和异质性的信息来简化、可处理的抽象化的模型。这些抽象化可以快速处理,以实现快速反应以及高级感知的细化。协同模型在人工手和触觉传感器的设计和控制中的应用也得到了说明。

相似文献

1
Modelling natural and artificial hands with synergies.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3153-61. doi: 10.1098/rstb.2011.0152.
2
Effect of visual and tactile feedback on kinematic synergies in the grasping hand.
Med Biol Eng Comput. 2016 Aug;54(8):1217-27. doi: 10.1007/s11517-015-1424-2. Epub 2015 Dec 11.
3
Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects.
J Neuroeng Rehabil. 2014 Jul 30;11:113. doi: 10.1186/1743-0003-11-113.
4
Evidence of muscle synergies during human grasping.
Biol Cybern. 2013 Apr;107(2):233-45. doi: 10.1007/s00422-013-0548-4. Epub 2013 Jan 31.
5
Dextrous hands: human, prosthetic, and robotic.
Presence (Camb). 1997 Feb;6(1):29-56. doi: 10.1162/pres.1997.6.1.29.
6
Grasp modelling with a biomechanical model of the hand.
Comput Methods Biomech Biomed Engin. 2014;17(4):297-310. doi: 10.1080/10255842.2012.682156. Epub 2012 May 15.
7
Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
IEEE Trans Haptics. 2016 Apr-Jun;9(2):207-20. doi: 10.1109/TOH.2016.2521378. Epub 2016 Jan 25.
9
Evidence for sparse synergies in grasping actions.
Sci Rep. 2018 Jan 12;8(1):616. doi: 10.1038/s41598-017-18776-y.
10
Learning the signatures of the human grasp using a scalable tactile glove.
Nature. 2019 May;569(7758):698-702. doi: 10.1038/s41586-019-1234-z. Epub 2019 May 29.

引用本文的文献

3
Design and Optimization of an Anthropomorphic Robot Finger.
Biomimetics (Basel). 2025 Mar 11;10(3):170. doi: 10.3390/biomimetics10030170.
4
A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.
Nat Commun. 2025 Jan 22;16(1):955. doi: 10.1038/s41467-025-56352-5.
5
Rewiring the evolution of the human hand: How the embodiment of a virtual bionic tool improves behavior.
iScience. 2024 Jun 6;27(6):109937. doi: 10.1016/j.isci.2024.109937. eCollection 2024 Jun 21.
6
A soft, synergy-based robotic glove for grasping assistance.
Wearable Technol. 2021 Apr 20;2:e4. doi: 10.1017/wtc.2021.3. eCollection 2021.
7
A soft supernumerary hand for rehabilitation in sub-acute stroke: a pilot study.
Sci Rep. 2022 Dec 13;12(1):21504. doi: 10.1038/s41598-022-25029-0.
8
Design, Implementation, and Evaluation of a Variable Stiffness Transradial Hand Prosthesis.
Front Neurorobot. 2022 Mar 10;16:789210. doi: 10.3389/fnbot.2022.789210. eCollection 2022.
10
Autonomy in Rehabilitation Robotics: An Intersection.
Annu Rev Control Robot Auton Syst. 2018 May;1:441-463. doi: 10.1146/annurev-control-061417-041727.

本文引用的文献

1
Rendering Softness: Integration of Kinesthetic and Cutaneous Information in a Haptic Device.
IEEE Trans Haptics. 2010 Apr-Jun;3(2):109-118. doi: 10.1109/TOH.2010.2. Epub 2010 Jan 22.
2
Obtaining information by dynamic (effortful) touching.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3123-32. doi: 10.1098/rstb.2011.0159.
3
Is there a 'plenhaptic' function?
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3115-22. doi: 10.1098/rstb.2011.0150.
4
Haptic object perception: spatial dimensionality and relation to vision.
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3097-105. doi: 10.1098/rstb.2011.0153.
6
CNS learns stable, accurate, and efficient movements using a simple algorithm.
J Neurosci. 2008 Oct 29;28(44):11165-73. doi: 10.1523/JNEUROSCI.3099-08.2008.
7
The statistical determinants of adaptation rate in human reaching.
J Vis. 2008 Apr 23;8(4):20.1-19. doi: 10.1167/8.4.20.
8
Tactile flow explains haptic counterparts of common visual illusions.
Brain Res Bull. 2008 Apr 15;75(6):737-41. doi: 10.1016/j.brainresbull.2008.01.011. Epub 2008 Feb 11.
9
Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.
J Neurosci. 2008 Feb 6;28(6):1271-81. doi: 10.1523/JNEUROSCI.4512-07.2008.
10
Action and perception at the level of synergies.
Hum Mov Sci. 2007 Aug;26(4):657-97. doi: 10.1016/j.humov.2007.04.002. Epub 2007 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验