Suppr超能文献

人类伸手动作中适应速率的统计决定因素。

The statistical determinants of adaptation rate in human reaching.

作者信息

Burge Johannes, Ernst Marc O, Banks Martin S

机构信息

UC Berkeley, School of Optometry, Berkeley, CA 94720-2020, USA.

出版信息

J Vis. 2008 Apr 23;8(4):20.1-19. doi: 10.1167/8.4.20.

Abstract

Rapid reaching to a target is generally accurate but also contains random and systematic error. Random errors result from noise in visual measurement, motor planning, and reach execution. Systematic error results from systematic changes in the mapping between the visual estimate of target location and the motor command necessary to reach the target (e.g., new spectacles, muscular fatigue). Humans maintain accurate reaching by recalibrating the visuomotor system, but no widely accepted computational model of the process exists. Given certain boundary conditions, a statistically optimal solution is a Kalman filter. We compared human to Kalman filter behavior to determine how humans take into account the statistical properties of errors and the reliability with which those errors can be measured. For most conditions, human and Kalman filter behavior was similar: Increasing measurement uncertainty caused similar decreases in recalibration rate; directionally asymmetric uncertainty caused different rates in different directions; more variation in systematic error increased recalibration rate. However, behavior differed in one respect: Inserting random error by perturbing feedback position causes slower adaptation in Kalman filters but had no effect in humans. This difference may be due to how biological systems remain responsive to changes in environmental statistics. We discuss the implications of this work.

摘要

快速伸手够向目标通常是准确的,但也包含随机误差和系统误差。随机误差源于视觉测量、运动规划和伸手动作执行过程中的噪声。系统误差则源于目标位置的视觉估计与够向目标所需的运动指令之间映射关系的系统性变化(例如,新眼镜、肌肉疲劳)。人类通过重新校准视觉运动系统来保持准确的伸手动作,但目前还没有被广泛接受的该过程的计算模型。在给定某些边界条件下,统计最优解是卡尔曼滤波器。我们将人类行为与卡尔曼滤波器行为进行比较,以确定人类如何考虑误差的统计特性以及测量这些误差的可靠性。在大多数情况下,人类行为和卡尔曼滤波器行为相似:测量不确定性增加会导致重新校准率出现类似程度的下降;方向不对称的不确定性会导致不同方向上的重新校准率不同;系统误差的更多变化会提高重新校准率。然而,在一个方面行为存在差异:通过扰动反馈位置引入随机误差会使卡尔曼滤波器的适应速度变慢,但对人类没有影响。这种差异可能是由于生物系统如何对环境统计数据的变化保持响应。我们讨论了这项工作的意义。

相似文献

1
The statistical determinants of adaptation rate in human reaching.
J Vis. 2008 Apr 23;8(4):20.1-19. doi: 10.1167/8.4.20.
2
Effect of visuo-proprioceptive mismatch rate on recalibration in hand perception.
Exp Brain Res. 2023 Sep;241(9):2299-2309. doi: 10.1007/s00221-023-06685-8. Epub 2023 Aug 16.
3
Reduced feedback barely slows down proprioceptive recalibration.
J Neurophysiol. 2022 Dec 1;128(6):1625-1633. doi: 10.1152/jn.00082.2022. Epub 2022 Nov 23.
4
Individual Differences in Motor Noise and Adaptation Rate Are Optimally Related.
eNeuro. 2018 Jul 31;5(4). doi: 10.1523/ENEURO.0170-18.2018. eCollection 2018 Jul-Aug.
5
Probabilistic models of state estimation predict visuomotor transformations during prism adaptation.
Vis Neurosci. 2012 Mar;29(2):119-29. doi: 10.1017/S0952523812000053. Epub 2012 Mar 6.
6
The role of the cross-sensory error signal in visuomotor adaptation.
Exp Brain Res. 2013 Jul;228(3):313-25. doi: 10.1007/s00221-013-3564-7. Epub 2013 May 26.
7
Proprioceptive recalibration arises slowly compared to reach adaptation.
Exp Brain Res. 2016 Aug;234(8):2201-13. doi: 10.1007/s00221-016-4624-6. Epub 2016 Mar 25.
8
Influence of haptic guidance in learning a novel visuomotor task.
J Physiol Paris. 2009 Sep-Dec;103(3-5):276-85. doi: 10.1016/j.jphysparis.2009.08.010. Epub 2009 Aug 7.
9
Effect of visuomotor-map uncertainty on visuomotor adaptation.
J Neurophysiol. 2012 Mar;107(6):1576-85. doi: 10.1152/jn.00204.2011. Epub 2011 Dec 21.
10
Generalization of reach adaptation and proprioceptive recalibration at different distances in the workspace.
Exp Brain Res. 2015 Mar;233(3):817-27. doi: 10.1007/s00221-014-4157-9. Epub 2014 Dec 6.

引用本文的文献

1
Causal inference, prediction and state estimation in sensorimotor learning.
Proc Biol Sci. 2025 Aug;292(2052):20251320. doi: 10.1098/rspb.2025.1320. Epub 2025 Aug 13.
2
Internal models in active self-motion estimation: role of inertial sensory cues.
J Neurophysiol. 2025 Jul 1;134(1):171-182. doi: 10.1152/jn.00281.2024. Epub 2025 Jun 14.
5
Continuous psychophysics: past, present, future.
Trends Cogn Sci. 2025 May;29(5):481-493. doi: 10.1016/j.tics.2025.01.005. Epub 2025 Feb 17.
6
The Brain's Sensitivity to Sensory Error Can Be Modulated by Altering Perceived Variability.
J Neurosci. 2025 Jan 29;45(5):e0024242024. doi: 10.1523/JNEUROSCI.0024-24.2024.
8
Minimal impact of chronic proprioceptive loss on implicit sensorimotor adaptation and perceived movement outcome.
J Neurophysiol. 2024 Sep 1;132(3):770-780. doi: 10.1152/jn.00096.2024. Epub 2024 Jul 31.
9
Sensorimotor adaptation impedes perturbation detection in grasping.
Psychon Bull Rev. 2025 Feb;32(1):373-386. doi: 10.3758/s13423-024-02543-y. Epub 2024 Jul 24.
10

本文引用的文献

1
The dynamics of memory as a consequence of optimal adaptation to a changing body.
Nat Neurosci. 2007 Jun;10(6):779-86. doi: 10.1038/nn1901. Epub 2007 May 13.
2
Optimal integration of shape information from vision and touch.
Exp Brain Res. 2007 Jun;179(4):595-606. doi: 10.1007/s00221-006-0814-y. Epub 2007 Jan 16.
3
Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration.
Proc Biol Sci. 2006 Sep 7;273(1598):2159-68. doi: 10.1098/rspb.2006.3578.
5
Modeling sensorimotor learning with linear dynamical systems.
Neural Comput. 2006 Apr;18(4):760-93. doi: 10.1162/089976606775774651.
6
The combination of vision and touch depends on spatial proximity.
J Vis. 2005 Dec 28;5(11):1013-23. doi: 10.1167/5.11.7.
7
Neural correlates of reach errors.
J Neurosci. 2005 Oct 26;25(43):9919-31. doi: 10.1523/JNEUROSCI.1874-05.2005.
8
Flexible strategies for sensory integration during motor planning.
Nat Neurosci. 2005 Apr;8(4):490-7. doi: 10.1038/nn1427. Epub 2005 Mar 27.
9
Optimal eye movement strategies in visual search.
Nature. 2005 Mar 17;434(7031):387-91. doi: 10.1038/nature03390.
10
The ventriloquist effect results from near-optimal bimodal integration.
Curr Biol. 2004 Feb 3;14(3):257-62. doi: 10.1016/j.cub.2004.01.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验