Burge Johannes, Ernst Marc O, Banks Martin S
UC Berkeley, School of Optometry, Berkeley, CA 94720-2020, USA.
J Vis. 2008 Apr 23;8(4):20.1-19. doi: 10.1167/8.4.20.
Rapid reaching to a target is generally accurate but also contains random and systematic error. Random errors result from noise in visual measurement, motor planning, and reach execution. Systematic error results from systematic changes in the mapping between the visual estimate of target location and the motor command necessary to reach the target (e.g., new spectacles, muscular fatigue). Humans maintain accurate reaching by recalibrating the visuomotor system, but no widely accepted computational model of the process exists. Given certain boundary conditions, a statistically optimal solution is a Kalman filter. We compared human to Kalman filter behavior to determine how humans take into account the statistical properties of errors and the reliability with which those errors can be measured. For most conditions, human and Kalman filter behavior was similar: Increasing measurement uncertainty caused similar decreases in recalibration rate; directionally asymmetric uncertainty caused different rates in different directions; more variation in systematic error increased recalibration rate. However, behavior differed in one respect: Inserting random error by perturbing feedback position causes slower adaptation in Kalman filters but had no effect in humans. This difference may be due to how biological systems remain responsive to changes in environmental statistics. We discuss the implications of this work.
快速伸手够向目标通常是准确的,但也包含随机误差和系统误差。随机误差源于视觉测量、运动规划和伸手动作执行过程中的噪声。系统误差则源于目标位置的视觉估计与够向目标所需的运动指令之间映射关系的系统性变化(例如,新眼镜、肌肉疲劳)。人类通过重新校准视觉运动系统来保持准确的伸手动作,但目前还没有被广泛接受的该过程的计算模型。在给定某些边界条件下,统计最优解是卡尔曼滤波器。我们将人类行为与卡尔曼滤波器行为进行比较,以确定人类如何考虑误差的统计特性以及测量这些误差的可靠性。在大多数情况下,人类行为和卡尔曼滤波器行为相似:测量不确定性增加会导致重新校准率出现类似程度的下降;方向不对称的不确定性会导致不同方向上的重新校准率不同;系统误差的更多变化会提高重新校准率。然而,在一个方面行为存在差异:通过扰动反馈位置引入随机误差会使卡尔曼滤波器的适应速度变慢,但对人类没有影响。这种差异可能是由于生物系统如何对环境统计数据的变化保持响应。我们讨论了这项工作的意义。