Suppr超能文献

用于事件发生时间数据的协作式靶向最大似然法

Collaborative targeted maximum likelihood for time to event data.

作者信息

Stitelman Ori M, van der Laan Mark J

机构信息

University of California, Berkeley, CA, USA.

出版信息

Int J Biostat. 2010;6(1):Article 21. doi: 10.2202/1557-4679.1249.

Abstract

Current methods used to analyze time to event data either rely on highly parametric assumptions which result in biased estimates of parameters which are purely chosen out of convenience, or are highly unstable because they ignore the global constraints of the true model. By using Targeted Maximum Likelihood Estimation (TMLE) one may consistently estimate parameters which directly answer the statistical question of interest. Targeted Maximum Likelihood Estimators are substitution estimators, which rely on estimating the underlying distribution. However, unlike other substitution estimators, the underlying distribution is estimated specifically to reduce bias in the estimate of the parameter of interest. We will present here an extension of TMLE for observational time to event data, the Collaborative Targeted Maximum Likelihood Estimator (C-TMLE) for the treatment specific survival curve. Through the use of a simulation study we will show that this method improves on commonly used methods in both robustness and efficiency. In fact, we will show that in certain situations the C-TMLE produces estimates whose mean square error is lower than the semi-parametric efficiency bound. We will also demonstrate that a semi-parametric efficient substitution estimator (TMLE) outperforms a semi-parametric efficient non-substitution estimator (the Augmented Inverse Probability Weighted estimator) in sparse data situations. Lastly, we will show that the bootstrap is able to produce valid 95 percent confidence intervals in sparse data situations, while influence curve based inference breaks down.

摘要

目前用于分析事件发生时间数据的方法,要么依赖于高度参数化假设,这会导致对参数的估计产生偏差,而这些参数纯粹是出于方便而选择的;要么高度不稳定,因为它们忽略了真实模型的全局约束。通过使用靶向最大似然估计(TMLE),可以一致地估计直接回答感兴趣的统计问题的参数。靶向最大似然估计器是替代估计器,它依赖于估计潜在分布。然而,与其他替代估计器不同的是,潜在分布的估计是专门为了减少感兴趣参数估计中的偏差。我们将在此展示针对观察性事件发生时间数据的TMLE扩展,即针对特定治疗生存曲线的协作靶向最大似然估计器(C-TMLE)。通过模拟研究,我们将表明该方法在稳健性和效率方面都优于常用方法。事实上,我们将表明在某些情况下,C-TMLE产生的估计值的均方误差低于半参数效率界。我们还将证明,在稀疏数据情况下,半参数有效替代估计器(TMLE)优于半参数有效非替代估计器(增强逆概率加权估计器)。最后,我们将表明,在稀疏数据情况下,自助法能够产生有效的95%置信区间,而基于影响曲线的推断则会失效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验