Suppr超能文献

在比较效果研究中合并异质数据源时,采用引导式贝叶斯插补法调整混杂因素。

Guided Bayesian imputation to adjust for confounding when combining heterogeneous data sources in comparative effectiveness research.

作者信息

Antonelli Joseph, Zigler Corwin, Dominici Francesca

机构信息

Department of Biostatistics, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115,USA.

出版信息

Biostatistics. 2017 Jul 1;18(3):553-568. doi: 10.1093/biostatistics/kxx003.

Abstract

In comparative effectiveness research, we are often interested in the estimation of an average causal effect from large observational data (the main study). Often this data does not measure all the necessary confounders. In many occasions, an extensive set of additional covariates is measured for a smaller and non-representative population (the validation study). In this setting, standard approaches for missing data imputation might not be adequate due to the large number of missing covariates in the main data relative to the smaller sample size of the validation data. We propose a Bayesian approach to estimate the average causal effect in the main study that borrows information from the validation study to improve confounding adjustment. Our approach combines ideas of Bayesian model averaging, confounder selection, and missing data imputation into a single framework. It allows for different treatment effects in the main study and in the validation study, and propagates the uncertainty due to the missing data imputation and confounder selection when estimating the average causal effect (ACE) in the main study. We compare our method to several existing approaches via simulation. We apply our method to a study examining the effect of surgical resection on survival among 10 396 Medicare beneficiaries with a brain tumor when additional covariate information is available on 2220 patients in SEER-Medicare. We find that the estimated ACE decreases by 30% when incorporating additional information from SEER-Medicare.

摘要

在比较效果研究中,我们常常关注从大型观察性数据(主要研究)中估计平均因果效应。通常,这些数据并未测量所有必要的混杂因素。在许多情况下,会针对一个规模较小且不具代表性的人群(验证研究)测量大量额外的协变量。在这种情况下,由于主要数据中缺失协变量的数量相对于验证数据较小的样本量而言较多,标准的缺失数据插补方法可能并不适用。我们提出一种贝叶斯方法来估计主要研究中的平均因果效应,该方法借鉴验证研究中的信息以改善混杂因素调整。我们的方法将贝叶斯模型平均、混杂因素选择和缺失数据插补的思想整合到一个单一框架中。它允许主要研究和验证研究中的治疗效果有所不同,并在估计主要研究中的平均因果效应(ACE)时传播因缺失数据插补和混杂因素选择而产生的不确定性。我们通过模拟将我们的方法与几种现有方法进行比较。我们将我们的方法应用于一项研究,该研究考察了手术切除对10396名患有脑肿瘤的医疗保险受益人生存率的影响,此时可获得SEER - 医疗保险中2220名患者的额外协变量信息。我们发现,纳入来自SEER - 医疗保险的额外信息后,估计的ACE降低了30%。

相似文献

3
An Approach to Addressing Multiple Imputation Model Uncertainty Using Bayesian Model Averaging.
Multivariate Behav Res. 2020 Jul-Aug;55(4):553-567. doi: 10.1080/00273171.2019.1657790. Epub 2019 Sep 20.
4
Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects.
J Am Stat Assoc. 2014 Jan 1;109(505):95-107. doi: 10.1080/01621459.2013.869498.
5
Sequential BART for imputation of missing covariates.
Biostatistics. 2016 Jul;17(3):589-602. doi: 10.1093/biostatistics/kxw009. Epub 2016 Mar 15.
6
Evaluating the impact of unmeasured confounding with internal validation data: an example cost evaluation in type 2 diabetes.
Value Health. 2013 Mar-Apr;16(2):259-66. doi: 10.1016/j.jval.2012.10.012. Epub 2013 Jan 23.
7
Bayesian nonparametric adjustment of confounding.
Biometrics. 2023 Dec;79(4):3252-3265. doi: 10.1111/biom.13833. Epub 2023 Feb 16.
9
Model-averaged confounder adjustment for estimating multivariate exposure effects with linear regression.
Biometrics. 2018 Sep;74(3):1034-1044. doi: 10.1111/biom.12860. Epub 2018 Mar 22.
10
Bayesian causal inference for observational studies with missingness in covariates and outcomes.
Biometrics. 2023 Dec;79(4):3624-3636. doi: 10.1111/biom.13918. Epub 2023 Aug 8.

引用本文的文献

1
Accommodating time-varying heterogeneity in risk estimation under the Cox model: a transfer learning approach.
J Am Stat Assoc. 2023;118(544):2276-2287. doi: 10.1080/01621459.2023.2210336. Epub 2023 Jun 26.
2
A synthetic data integration framework to leverage external summary-level information from heterogeneous populations.
Biometrics. 2023 Dec;79(4):3831-3845. doi: 10.1111/biom.13852. Epub 2023 Apr 4.
3
Data Integration in Causal Inference.
Wiley Interdiscip Rev Comput Stat. 2023 Jan-Feb;15(1). doi: 10.1002/wics.1581. Epub 2022 Apr 8.
6
Combining Multiple Observational Data Sources to Estimate Causal Effects.
J Am Stat Assoc. 2020;115(531):1540-1554. doi: 10.1080/01621459.2019.1609973. Epub 2019 Jun 11.
7
High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors.
Bayesian Anal. 2019 Sep;14(3):805-828. doi: 10.1214/18-ba1131. Epub 2019 Jun 11.
8
Incorporating historical models with adaptive Bayesian updates.
Biostatistics. 2020 Apr 1;21(2):e47-e64. doi: 10.1093/biostatistics/kxy053.

本文引用的文献

1
Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources.
J Am Stat Assoc. 2016 Mar;111(513):107-117. doi: 10.1080/01621459.2015.1123157. Epub 2016 May 5.
3
Confounder selection via penalized credible regions.
Biometrics. 2014 Dec;70(4):852-61. doi: 10.1111/biom.12203. Epub 2014 Aug 14.
4
Joint effects of colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of colorectal cancer.
PLoS One. 2014 Mar 26;9(3):e92212. doi: 10.1371/journal.pone.0092212. eCollection 2014.
6
Bayesian effect estimation accounting for adjustment uncertainty.
Biometrics. 2012 Sep;68(3):661-71. doi: 10.1111/j.1541-0420.2011.01731.x. Epub 2012 Feb 24.
7
Two-level stochastic search variable selection in GLMs with missing predictors.
Int J Biostat. 2010;6(1):Article 33. doi: 10.2202/1557-4679.1173.
8
On model selection and model misspecification in causal inference.
Stat Methods Med Res. 2012 Feb;21(1):7-30. doi: 10.1177/0962280210387717. Epub 2010 Nov 12.
9
Supratentorial glioblastoma multiforme: the role of surgical resection versus biopsy among older patients.
Ann Surg Oncol. 2011 Jan;18(1):239-45. doi: 10.1245/s10434-010-1242-6. Epub 2010 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验