Department of Orthopaedic Surgery, Orthopaedic Research Laboratories, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA 15203, USA.
Knee Surg Sports Traumatol Arthrosc. 2012 May;20(5):979-85. doi: 10.1007/s00167-011-1683-x. Epub 2011 Oct 5.
The aims of this study were (1) to evaluate the femoral tunnel position after anatomic double-bundle and nonanatomic single-bundle reconstruction; (2) to evaluate the influence of rotation of the femur caused by limb malalignment on measurements of the position of the femoral ACL tunnel aperture relative to Blumensaat's line.
3D CT scans were performed in 5 patients after anatomic double-bundle reconstruction and 5 patients after nonanatomic single-bundle reconstruction. Digitally reconstructed lateral radiographs were generated from the 3D CT scans to determine the tunnel position on the femur along and perpendicular to Blumensaat's line. The femur was then rotated to simulate internal/external and varus/valgus rotations from 0° to 15° in 5° increments. At each rotated bone position, tunnel position relative to Blumensaat's line was calculated and the difference from the lateral radiograph was calculated.
After double-bundle reconstruction, the AM tunnel was located at 31.5 (±5.0) % along Blumensaat's line and 29.7 (±13.6) % perpendicular to Blumensaat's line, and the PL tunnel at 36.2 (±12.9) % along Blumensaat's line and 34.2 (±7.6) % perpendicular to Blumensaat's line. Valgus greater than 10° significantly affected the assessment of tunnel position (P = 0.043). After nonanatomic single-bundle reconstruction, the tunnel position was 35.4 (±15.0) % along Blumensaat's line and -2.7 (±19.4) % perpendicular to Blumensaat's line. Internal rotation of more than 10° significantly affected the assessment of tunnel position (P = 0.043).
Tunnel position after anatomic double-bundle reconstruction and nonanatomic single-bundle reconstruction can be determined on lateral radiographs. However, valgus and internal rotation of more than 10° can introduce significant errors in tunnel position estimates.
Case series, Level IV.
本研究的目的为:(1)评估解剖双束和非解剖单束重建后股骨隧道的位置;(2)评估肢体对线不良引起的股骨旋转对 ACL 股骨隧道开口相对于 Blumensaat 线的位置测量的影响。
对 5 例解剖双束重建后和 5 例非解剖单束重建后的患者进行 3D CT 扫描。从 3D CT 扫描中生成数字重建的侧位射线照片,以确定股骨沿 Blumensaat 线和垂直于 Blumensaat 线的隧道位置。然后将股骨旋转,使内/外翻和内/外旋从 0°至 15°以 5°为增量。在每个旋转的骨位,计算隧道相对于 Blumensaat 线的位置,并计算与侧位射线照片的差值。
在双束重建后,AM 隧道位于 Blumensaat 线的 31.5(±5.0) %处,垂直于 Blumensaat 线的 29.7(±13.6) %处,PL 隧道位于 Blumensaat 线的 36.2(±12.9) %处,垂直于 Blumensaat 线的 34.2(±7.6) %处。大于 10°的内翻显著影响隧道位置的评估(P=0.043)。在非解剖单束重建后,隧道位置在 Blumensaat 线的 35.4(±15.0) %处,垂直于 Blumensaat 线的-2.7(±19.4) %处。大于 10°的内旋显著影响隧道位置的评估(P=0.043)。
解剖双束重建和非解剖单束重建后,可在侧位射线照片上确定隧道位置。然而,大于 10°的外翻和内旋会导致隧道位置估计产生显著误差。
病例系列,IV 级。