Suppr超能文献

利用基于数量性状位点的物候模型预测芸薹属植物的开花时间。

Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model.

机构信息

Institute of Biological Production Systems - Vegetable Systems Modelling, Leibniz Universität Hannover, Hannover, Germany.

出版信息

Plant Biol (Stuttg). 2012 Jan;14(1):179-89. doi: 10.1111/j.1438-8677.2011.00478.x. Epub 2011 Jun 3.

Abstract

Uniformly developing plants with a predictable time to harvest or flowering under unfavourable climate conditions are a major breeding goal in crop species. The main flowering regulators and their response to environmental signals have been identified in Arabidopsis thaliana and homologues of flowering genes have been mapped in many crop species. However, it remains unclear which genes determine within and across genotype flowering time variability in Brassica oleracea and how genetic flowering time regulation is influenced by environmental factors. The goal of this study is model-based prediction of flowering time in a B. oleracea DH-line population using genotype-specific and quantitative trait loci (QTL) model input parameters. A QTL-based phenology model accounting for genotypic differences in temperature responses during vernalisation and non-temperature-sensitive durations from floral transition to flowering was evaluated in two field trials. The model was parameterised using original genotype-specific model input parameters and QTL effects. The genotype-specific model parameterisation showed accurate predictability of flowering time if floral induction was promoted by low temperature (R(2) = 0.81); unfavourably high temperatures reduced predictability (R(2) = 0.65). Replacing original model input parameters by QTL effects reduced the capability of the model to describe across-genotype variability (R(2) = 0.59 and 0.50). Flowering time was highly correlated with a model parameter accounting for vernalisation effects. Within-genotype variability was significantly correlated with the same parameter if temperature during the inductive phase was high. We conclude that flowering time variability across genotypes was largely due to differences in vernalisation response, although it has been shown elsewhere that the candidate FLOWERING LOCUS C (FLC) did not co-segregate with flowering time in the same population. FLC independent vernalisation pathways have been described for several species, but not yet for B. oleracea.

摘要

在不利的气候条件下,均匀生长且可预测收获或开花时间的植物是作物品种的主要育种目标。拟南芥中已经确定了主要的开花调节剂及其对环境信号的反应,并且在许多作物品种中已经定位了开花基因的同源物。然而,尚不清楚哪些基因决定了甘蓝型油菜内在和跨基因型开花时间的变异性,以及遗传开花时间调控如何受到环境因素的影响。本研究的目的是使用基因型特异性和数量性状位点 (QTL) 模型输入参数,对甘蓝型油菜 DH 系群体的开花时间进行基于模型的预测。在两个田间试验中,评估了一种基于 QTL 的物候模型,该模型考虑了在春化过程中以及从花转变到开花的非温度敏感期期间温度响应的基因型差异。该模型使用原始基因型特异性模型输入参数和 QTL 效应进行了参数化。如果低温促进花诱导(R(2) = 0.81),则基因型特异性模型参数化显示出开花时间的准确可预测性;不利的高温会降低可预测性(R(2) = 0.65)。用 QTL 效应代替原始模型输入参数会降低模型描述跨基因型变异性的能力(R(2) = 0.59 和 0.50)。开花时间与一个反映春化效应的模型参数高度相关。如果诱导阶段的温度较高,则基因型内变异性与同一参数显著相关。我们得出结论,跨基因型的开花时间变异性主要归因于春化反应的差异,尽管其他地方已经表明候选开花基因 C (FLC) 并未与同一群体中的开花时间共分离。已经描述了几种物种的 FLC 独立春化途径,但尚未在甘蓝型油菜中描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验