Suppr超能文献

基于作物模型的基因组选择多环境试验优化

Optimization of multi-environment trials for genomic selection based on crop models.

作者信息

Rincent R, Kuhn E, Monod H, Oury F-X, Rousset M, Allard V, Le Gouis J

机构信息

INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63100, Clermont-Ferrand, France.

Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63178, Aubière Cedex, France.

出版信息

Theor Appl Genet. 2017 Aug;130(8):1735-1752. doi: 10.1007/s00122-017-2922-4. Epub 2017 May 24.

Abstract

We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.

摘要

我们提出了一种统计标准,通过结合作物生长模型和基因组选择模型,优化多环境试验,以更有效地预测基因型与环境的相互作用。基因型与环境的相互作用(GEI)在植物多环境试验(METs)中很常见。在这种情况下,为基因组选择(GS)开发的模型需要进行调整,基因组选择是指利用全基因组信息预测选择候选个体的育种值。一种提高在各种环境中预测准确性的有前景的方法是,借助纳入遗传参数的作物生长模型(CGM),将生态生理学建模与遗传建模相结合。这种方法的效率依赖于参数估计的质量,而参数估计质量又取决于用于校准的构成该MET的环境。本研究的目的是确定一种方法,以优化构成MET的环境集,从而在此背景下估计遗传参数。为此定义了一种名为OptiMET的标准,并以小麦物候为例,在模拟数据和真实数据上对其进行了评估。用OptiMET定义的MET能够以更低的误差估计遗传参数,从而提高QTL检测能力和预测准确性。就参数估计质量而言,用OptiMET定义的MET平均比由两倍数量环境组成的随机MET更有效。因此,OptiMET是一种有价值的工具,可用于确定最佳利用MET和当前正在开发的表型分析工具的最优实验条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a53a/5511605/3f0fee7243d4/122_2017_2922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验