Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
Nat Prod Rep. 2011 Nov;28(12):1937-55. doi: 10.1039/c1np00051a. Epub 2011 Oct 6.
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
姜黄素(双阿魏酰甲烷)是姜黄(姜黄)中的活性成分,是一种具有高度多效性的分子,具有抗炎、抗氧化、化学预防、化学增敏和放射增敏作用。归因于姜黄素的多效性活动来自其复杂的分子结构和化学性质,以及其影响多种信号分子的能力。已经表明姜黄素能够通过多种力直接与许多信号分子结合,例如炎症分子、细胞存活蛋白、蛋白激酶、蛋白还原酶、组蛋白乙酰转移酶、组蛋白脱乙酰酶、乙二醛酶 I、黄嘌呤氧化酶、蛋白酶体、HIV1 整合酶、HIV1 蛋白酶、肌浆内质网 Ca(2+)ATP 酶、DNA 甲基转移酶 1、FtsZ 原丝、载体蛋白和金属离子。姜黄素还可以直接与 DNA 和 RNA 结合。由于其β-二酮部分,姜黄素经历酮-烯醇互变异构,据报道,这种互变异构是直接结合的有利状态。在姜黄素上发现的适合与其他大分子相互作用的功能基团包括α,β-不饱和β-二酮部分、β-二酮部分的羰基和烯醇基团、甲氧基和酚羟基以及苯环。各种生物物理工具已被用于监测姜黄素与其他蛋白质的直接相互作用,包括吸收、荧光、傅里叶变换红外(FTIR)和圆二色性(CD)光谱、表面等离子体共振、竞争性配体结合、福斯特型荧光共振能量转移(FRET)、放射性标记、定点诱变、基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)、免疫沉淀、噬菌体展示生物淘选、电子显微镜、1-苯胺-8-萘磺酸盐(ANS)置换和共定位。分子对接是计算结合亲和力和预测结合位点的最常用计算工具,也被用于进一步表征姜黄素的结合位点。此外,姜黄素直接与载体蛋白结合的能力提高了其溶解度和生物利用度。在这篇综述中,我们重点介绍了姜黄素如何直接靶向信号分子,以及结合姜黄素-蛋白质复合物的不同力以及这种相互作用如何影响蛋白质的生物学特性。我们还将讨论设计用于以更高亲和力结合选择性靶标的姜黄素的各种类似物。