Tronconi Marcos A, Andreo Carlos S, Drincovich Maria F
Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina.
Front Plant Sci. 2018 May 11;9:565. doi: 10.3389/fpls.2018.00565. eCollection 2018.
Malic enzyme (ME) comprises a family of proteins with multiple isoforms located in different compartments of eukaryotic cells. In plants, cytosolic and plastidic enzymes share several characteristics such as NADP specificity (NADP-ME), oxaloacetate decarboxylase (OAD) activity, and homo-oligomeric assembly. However, mitochondrial counterparts are NAD-dependent proteins (mNAD-ME) lacking OAD activity, which can be structured as homo- and hetero-oligomers of two different subunits. In this study, we examined the molecular basis of these differences using multiple sequence analysis, structural modeling, and phylogenetic approaches. Plant mNAD-MEs show the lowest identity values when compared with other eukaryotic MEs with major differences including short amino acid insertions distributed throughout the primary sequence. Some residues in these exclusive segments are co-evolutionarily connected, suggesting that they could be important for enzymatic functionality. Phylogenetic analysis indicates that eukaryotes from different kingdoms used different strategies for acquiring the current set of NAD(P)-ME isoforms. In this sense, while the full gene family of vertebrates derives from the same ancestral gene, plant NADP-ME and NAD-ME isoforms have a distinct evolutionary history. Plant genes may have arisen from the α-protobacterial-like mitochondrial ancestor, a characteristic shared with major eukaryotic taxa. On the other hand, plant genes were probably gained through an independent process involving the Archaeplastida ancestor. Finally, several residue signatures unique to all plant mNAD-MEs could be identified, some of which might be functionally connected to their exclusive biochemical properties. In light of these results, molecular evolutionary scenarios for these widely distributed enzymes in plants are discussed.
苹果酸酶(ME)是一类蛋白质家族,具有多种亚型,位于真核细胞的不同区室中。在植物中,胞质和质体中的酶具有若干共同特征,如对NADP的特异性(NADP - ME)、草酰乙酸脱羧酶(OAD)活性以及同型寡聚体组装。然而,线粒体中的对应物是依赖NAD的蛋白质(mNAD - ME),缺乏OAD活性,其可以由两个不同亚基的同型和异型寡聚体构成。在本研究中,我们使用多序列分析、结构建模和系统发育方法研究了这些差异的分子基础。与其他真核生物的ME相比,植物mNAD - ME显示出最低的同一性值,主要差异包括分布在整个一级序列中的短氨基酸插入。这些独特区段中的一些残基在共进化上相互关联,表明它们可能对酶的功能很重要。系统发育分析表明,来自不同界的真核生物采用不同策略来获得当前的NAD(P) - ME亚型集。从这个意义上说,虽然脊椎动物的完整基因家族源自同一个祖先基因,但植物NADP - ME和NAD - ME亚型具有不同的进化历史。植物基因可能起源于类似α - 原细菌的线粒体祖先,这是与主要真核生物类群共有的特征。另一方面,植物基因可能是通过涉及原始色素体生物祖先的独立过程获得的。最后,可以鉴定出所有植物mNAD - ME特有的几个残基特征,其中一些可能在功能上与其独特的生化特性相关。根据这些结果,讨论了这些在植物中广泛分布的酶的分子进化情况。