Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
J Am Chem Soc. 2011 Nov 2;133(43):17329-40. doi: 10.1021/ja205304t. Epub 2011 Oct 7.
N(2) binds to the active-site metal cluster in the nitrogenase MoFe protein, the FeMo-cofactor ([7Fe-9S-Mo-homocitrate-X]; FeMo-co) only after the MoFe protein has accumulated three or four electrons/protons (E(3) or E(4) states), with the E(4) state being optimally activated. Here we study the FeMo-co (57)Fe atoms of E(4) trapped with the α-70(Val→Ile) MoFe protein variant through use of advanced ENDOR methods: 'random-hop' Davies pulsed 35 GHz ENDOR; difference triple resonance; the recently developed Pulse-Endor-SaTuration and REcovery (PESTRE) protocol for determining hyperfine-coupling signs; and Raw-DATA (RD)-PESTRE, a PESTRE variant that gives a continuous sign readout over a selected radiofrequency range. These methods have allowed experimental determination of the signed isotropic (57)Fe hyperfine couplings for five of the seven iron sites of the reductively activated E(4) FeMo-co, and given the magnitude of the coupling for a sixth. When supplemented by the use of sum-rules developed to describe electron-spin coupling in FeS proteins, these (57)Fe measurements yield both the magnitude and signs of the isotropic couplings for the complete set of seven Fe sites of FeMo-co in E(4). In light of the previous findings that FeMo-co of E(4) binds two hydrides in the form of (Fe-(μ-H(-))-Fe) fragments, and that molybdenum has not become reduced, an 'electron inventory' analysis assigns the formal redox level of FeMo-co metal ions in E(4) to that of the resting state (M(N)), with the four accumulated electrons residing on the two Fe-bound hydrides. Comparisons with earlier (57)Fe ENDOR studies and electron inventory analyses of the bio-organometallic intermediate formed during the reduction of alkynes and the CO-inhibited forms of nitrogenase (hi-CO and lo-CO) inspire the conjecture that throughout the eight-electron reduction of N(2) plus 2H(+) to two NH(3) plus H(2), the inorganic core of FeMo-co cycles through only a single redox couple connecting two formal redox levels: those associated with the resting state, M(N), and with the one-electron reduced state, M(R). We further note that this conjecture might apply to other complex FeS enzymes.
N(2) 结合到氮酶 MoFe 蛋白的活性位点金属簇中,只有在 MoFe 蛋白积累了三到四个电子/质子(E(3) 或 E(4) 态)后,FeMo-cofactor([7Fe-9S-Mo-同型柠檬酸-X];FeMo-co)才与 N(2) 结合,E(4) 态是最佳激活态。在这里,我们通过使用先进的 ENDOR 方法研究了 E(4)态捕获的带有 α-70(Val→Ile) MoFe 蛋白变体的 FeMo-co(57)Fe 原子:'随机跳跃'戴维斯脉冲 35GHz ENDOR;差三重共振;最近开发的脉冲 ENDOR-饱和和恢复(PESTRE)协议用于确定超精细耦合符号;以及 Raw-DATA(RD)-PESTRE,一种 PESTRE 变体,可在选定的射频范围内连续读取符号。这些方法允许通过实验确定还原激活的 E(4)FeMo-co 中七个铁位点中的五个的带符号各向同性(57)Fe 超精细耦合,以及第六个铁位点的耦合大小。当辅以用于描述 FeS 蛋白中电子自旋耦合的和规则时,这些(57)Fe 测量结果不仅给出了 E(4)中 FeMo-co 的七个铁位点的完整集合的各向同性耦合的大小和符号。考虑到之前的发现,即 E(4)中的 FeMo-co 以(Fe-(μ-H(-))-Fe)片段的形式结合两个氢化物,并且钼没有被还原,因此“电子清单”分析将 E(4)中 FeMo-co 金属离子的形式氧化还原水平分配给还原状态(M(N)),其中四个积累的电子位于两个与 Fe 结合的氢化物上。与早期的(57)Fe ENDOR 研究以及在炔烃还原过程中形成的生物有机金属中间体和 CO 抑制的氮酶(hi-CO 和 lo-CO)的电子清单分析进行比较,激发了这样的推测,即在 N(2)加上 2H(+)到两个 NH(3)加上 H(2)的八电子还原过程中,FeMo-co 的无机核心仅通过连接两个形式氧化还原水平的单个氧化还原对循环:与还原状态 M(N)和一个电子还原状态 M(R)相关联。我们进一步注意到,该假设可能适用于其他复杂的 FeS 酶。