Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States.
J Am Chem Soc. 2021 Jun 23;143(24):9183-9190. doi: 10.1021/jacs.1c04152. Epub 2021 Jun 10.
Mo-dependent nitrogenase is a major contributor to global biological N reduction, which sustains life on Earth. Its multi-metallic active-site FeMo-cofactor (FeMoSC-homocitrate) contains a carbide (C) centered within a trigonal prismatic CFe core resembling the structural motif of the iron carbide, cementite. The role of the carbide in FeMo-cofactor binding and activation of substrates and inhibitors is unknown. To explore this role, the carbide has been in effect selectively enriched with C, which enables its detailed examination by ENDOR/ESEEM spectroscopies. C-carbide ENDOR of the = 3/2 resting state (E) is remarkable, with an extremely small isotropic hyperfine coupling constant, = +0.86 MHz. Turnover under high CO partial pressure generates the = 1/2 hi-CO state, with two CO molecules bound to FeMo-cofactor. This conversion surprisingly leaves the small of the C carbide isotropic hyperfine-coupling constant essentially unchanged, = -1.30 MHz. This indicates that both the E and hi-CO states exhibit an exchange-coupling scheme with nearly cancelling contributions to from three spin-up and three spin-down carbide-bound Fe ions. In contrast, the anisotropic hyperfine coupling constant undergoes a symmetry change upon conversion of E to hi-CO that may be associated with bonding and coordination changes at Fe ions. In combination with the negligible difference between CFe core structures of E and hi-CO, these results suggest that in CO-inhibited hi-CO the dominant role of the FeMo-cofactor carbide is to maintain the core structure, rather than to facilitate inhibitor binding through changes in Fe-carbide covalency or stretching/breaking of carbide-Fe bonds.
钼依赖型氮酶是全球生物氮还原的主要贡献者,它维持着地球上的生命。其多金属活性位点 FeMo 辅因子(FeMoSC-柠檬酸)含有一个位于三角棱柱 CFe 核中心的碳化物(C),类似于碳化铁、渗碳体的结构特征。碳化物在 FeMo 辅因子结合和激活底物和抑制剂方面的作用尚不清楚。为了探索这一作用,已经有效地选择性地富集了 C,这使得可以通过 ENDOR/ESEEM 光谱学对其进行详细研究。 = 3/2 静止态(E)的 C-碳化物 ENDOR 非常显著,具有极小的各向同性超精细耦合常数, = +0.86 MHz。在高 CO 分压下的周转会产生 = 1/2 hi-CO 状态,其中有两个 CO 分子与 FeMo 辅因子结合。令人惊讶的是,这种转化几乎没有改变 C 碳化物各向同性超精细耦合常数的小值, = -1.30 MHz。这表明 E 和 hi-CO 两种状态都表现出一种交换耦合方案,其中来自三个自旋向上和三个自旋向下的碳化物结合 Fe 离子的贡献几乎相消。相比之下,E 转化为 hi-CO 时各向异性超精细耦合常数会发生对称性变化,这可能与 Fe 离子的成键和配位变化有关。与 E 和 hi-CO 的 CFe 核结构几乎没有差异相结合,这些结果表明,在 CO 抑制的 hi-CO 中,FeMo 辅因子碳化物的主要作用是维持核结构,而不是通过改变 Fe-碳化物的共价键或碳化物-Fe 键的拉伸/断裂来促进抑制剂的结合。