Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Inorg Chem. 2010 Jan 18;49(2):704-13. doi: 10.1021/ic902006v.
MoN(2) (Mo = [(HIPTNCH(2)CH(2))(3)N]Mo, where HIPT = 3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)) is the first stage in the reduction of N(2) to NH(3) by Mo. Its reaction with dihydrogen in fluid solution yields "MoH(2)", a molybdenum-dihydrogen compound. In this report, we describe a comprehensive electron paramagnetic resonance (EPR) and (1/2)H/(14)N electron nuclear double resonance (ENDOR) study of the product of the reaction between MoN(2) and H(2) that is trapped in frozen solution, 1. EPR spectra of 1 show that it has a near-axial g tensor, g = [2.086, 1.961, 1.947], with dramatically reduced g anisotropy relative to MoN(2). Analysis of the g values reveal that this anion has the Mo(III), d(xz), d(yz) orbital configuration, as proposed for the parent MoN(2) complex, and that it undergoes a strong pseudo-Jahn-Teller (PJT) distortion. Simulations of the 2D 35 GHz (1)H ENDOR pattern comprised of spectra taken at multiple fields across the EPR envelope (2 K) show that 1 is the MoH anion. The 35 GHz Mims pulsed (2)H ENDOR spectra of 1 prepared with (2)H(2) show the corresponding (2)H(-) signal, with a substantial deuterium isotope effect in a(iso). Radiolytic reduction of a structural analogue, Mo(IV)H, at 77 K, confirms the assignment of 1. Analysis of the 2D (14)N ENDOR pattern for the ligand amine nitrogen further reveals the presence of a linear N(ax)-Mo-H(-) molecular axis that is parallel to the unique magnetic direction (g(1)). The ENDOR pattern of the three equatorial nitrogens is well-reproduced by a model in which the Mo-N(eq) plane has undergone a static, not dynamic, PJT distortion, leading to a range of hyperfine couplings for the three N(eq)'s. The finding of a nearly axial hyperfine coupling tensor for the terminal hydride bound Mo supports the earlier proposal that the two exchangeable hydrogenic species bound to the FeMo cofactor of the nitrogense turnover intermediate, which has accumulated four electrons/protons (E(4)), are hydrides that bridge two metal ions, not terminal hydrides.
MoN(2)(Mo=[(HIPT NCH(2)CH(2))(3)N]Mo,其中 HIPT=3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3))是 Mo 将 N(2)还原为 NH(3)的第一阶段。它与流体溶液中的氢气反应生成“MoH(2)”,一种钼-氢化合物。在本报告中,我们描述了 MoN(2)与 H(2)反应产物在冷冻溶液中捕获的全面电子顺磁共振(EPR)和(1/2)H/(14)N 电子核双共振(ENDOR)研究,1。1 的 EPR 谱表明,它具有近轴向 g 张量,g=[2.086,1.961,1.947],与 MoN(2)相比,g 各向异性显著降低。对 g 值的分析表明,这种阴离子具有 Mo(III),d(xz),d(yz)轨道构型,如母体 MoN(2)配合物所提出的,并且它经历了强烈的伪 Jahn-Teller (PJT) 畸变。在横跨 EPR 包络(2 K)的多个场处采集的光谱的 2D 35 GHz(1)H ENDOR 图谱的模拟表明,1 是MoH阴离子。用(2)H(2)制备的 1 的 35 GHz Mims 脉冲(2)H ENDOR 谱显示出相应的(2)H(-)信号,在 a(iso)中存在很大的氘同位素效应。77 K 下 Mo(IV)H 的辐射还原证实了 1 的归属。对配体胺氮的 2D(14)N ENDOR 图谱的分析进一步表明,存在线性 N(ax)-Mo-H(-)分子轴,该分子轴与独特的磁方向(g(1))平行。三个赤道氮的 ENDOR 图谱可以通过一个模型很好地再现,该模型中 Mo-N(eq)平面经历了静态而不是动态的 PJT 畸变,导致三个 N(eq)'s 的超精细耦合发生变化。对于末端氢化物结合的 Mo,近轴向超精细耦合张量的发现支持了先前的提议,即与氮转化中间体的 FeMo 辅因子结合的两个可交换的氢化物物种是桥接两个金属离子的氢化物,而不是末端氢化物。