Suppr超能文献

我们能否捕捉到这些交集?年长的黑人女性、教育和健康。

Can we capture the intersections? Older Black women, education, and health.

机构信息

Department of Sociology, Case Western Reserve University, Cleveland, OH 44106-7124, USA.

出版信息

Womens Health Issues. 2012 Jan-Feb;22(1):e91-8. doi: 10.1016/j.whi.2011.08.002. Epub 2011 Oct 7.

Abstract

BACKGROUND

Race/ethnicity, gender, and socioeconomic status are the three most prominent factors to predict health outcomes. Despite the fact that persistent health inequalities are found between groups, we know little about how the interrelatedness of these social positions influences the health of older adults.

PURPOSE

In this study, we apply a feminist intersectional approach to the study of health inequalities, treating social variables as multiplicative rather than additive to capture the mutually constitutive dimensions of race/ethnicity, gender, and education.

METHODS

This paper makes use of data from the National Social Life, Health and Aging Project, a nationally representative sample of 3,005 community-dwelling U.S. adults aged 57 to 85 years old, to explore intersections of race, gender, and education. We use a combination of stratified analysis with an interaction term to test multiplicative effects.

RESULTS

First, our findings confirm that Black women with less than a high school education have the poorest self-rated health. Second, at the bivariate level, we find highly educated White men are not the converse of lower educated Black women. Third, at the multivariate level, we find being Black and female has an effect on health beyond those already accounted for by race and gender.

CONCLUSION

This research demonstrates the explanatory power of an intersectionality approach to deepen understanding of the overlapping, simultaneous production of health inequalities by race, class, and gender.

摘要

背景

种族/民族、性别和社会经济地位是预测健康结果的三个最重要因素。尽管在不同群体之间存在持续的健康不平等现象,但我们对这些社会地位的相互关联性如何影响老年人的健康知之甚少。

目的

在这项研究中,我们将女权主义交叉方法应用于健康不平等研究,将社会变量视为乘法而不是加法,以捕捉种族/民族、性别和教育的相互构成维度。

方法

本文利用来自全国社会生活、健康和老龄化项目的数据,该项目是一个具有全国代表性的 3005 名居住在社区的 57 至 85 岁美国成年人样本,以探索种族、性别和教育的交叉点。我们使用分层分析与交互项的组合来检验乘法效应。

结果

首先,我们的发现证实,受教育程度较低的黑人女性中,自评健康状况最差的是黑人女性。其次,在单变量水平上,我们发现受过高等教育的白人男性并不是受教育程度较低的黑人女性的反面。第三,在多变量水平上,我们发现黑人女性的身份对健康的影响超出了已经考虑到的种族和性别因素。

结论

这项研究展示了交叉方法的解释力,可以加深我们对种族、阶级和性别重叠、同时产生健康不平等的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验