Suppr超能文献

运动训练对冠状动脉循环的影响。

The coronary circulation in exercise training.

机构信息

Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H10-23. doi: 10.1152/ajpheart.00574.2011. Epub 2011 Oct 7.

Abstract

Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.

摘要

运动训练(EX)通过适应冠状动脉微循环,包括增加小动脉直径和/或密度以及改变冠状动脉阻力血管的血管舒缩反应,从而增加冠状动脉的输送能力。在大型动物中,EX 通过新毛细血管的血管生成增加毛细血管交换能力,其速度与 EX 诱导的心肌肥厚相匹配,从而使毛细血管密度保持正常。然而,EX 后冠状动脉毛细血管交换面积增加(即毛细血管通透性表面积产物增加),因为冠状动脉阻力改变和交换表面积与血流分布相匹配。改善的冠状动脉毛细血管血流分布似乎是由于冠状动脉树的结构变化和冠状动脉阻力血管的血管舒缩反应改变所致。EX 还改变了导水管状冠状动脉的血管舒缩反应,因为 EX 后,α-肾上腺素能受体反应性减弱。有趣的是,由于对肾上腺素刺激的受体反应性增加,即使在循环儿茶酚胺水平较低的情况下,冠状动脉微循环中的 α-和β-肾上腺素能张力似乎也得以维持。EX 还改变了冠状动脉阻力血管的其他血管舒缩控制过程。例如,EX 后冠状动脉小动脉表现出增强的肌源性张力,可能是由于钙依赖性蛋白激酶 C 信号转导介导的电压门控钙通道活性对拉伸的改变所致。相反,EX 增强了整个冠状动脉小动脉网络和冠状动脉疾病(CAD)中的导水管状动脉的内皮依赖性血管舒张。增强的内皮依赖性舒张似乎是由于一氧化氮生物利用度的增加所致,这是由于一氧化氮合酶表达/活性的变化和氧化应激的减少。EX 还降低了静息和运动时心肌中的血管外压缩力,主要是因为心率和收缩期持续时间的降低。EX 不会刺激正常心脏中的冠状动脉侧支血管生长。然而,如果运动引起缺血,而在静息状态下这种缺血是不存在或最小的,有证据表明侧支生长可以增强。虽然有证据表明 EX 可以减少动脉粥样硬化病变的进展,甚至可以诱导人类动脉粥样硬化病变的消退,但由于迄今为止进行的大多数前瞻性试验都必须包括其他生活方式改变和治疗策略,因此这方面的证据并不充分。来自 CAD 大型动物模型的文献也说明了 EX 是否可以诱导动脉粥样硬化病变的消退或减缓其进展的问题。因此,尽管来自 CAD 患者和 CAD 动物模型的研究证据表明 EX 增加了整个冠状动脉血管树的内皮依赖性舒张,但 EX 逆转或减缓 CAD 中病变发展的证据目前还不明确。这表明,EX 在 CAD 中的有益作用可能不是对冠状动脉壁的直接作用的结果。如果这一假设是正确的,那么确定这些有益作用所涉及的机制就很重要。

相似文献

1
The coronary circulation in exercise training.运动训练对冠状动脉循环的影响。
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H10-23. doi: 10.1152/ajpheart.00574.2011. Epub 2011 Oct 7.
2
Regulation of coronary blood flow during exercise.运动期间冠状动脉血流的调节。
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
4
Exercise training-induced adaptations in the coronary circulation.运动训练引起的冠状动脉循环适应性变化。
Med Sci Sports Exerc. 1998 Mar;30(3):352-60. doi: 10.1097/00005768-199803000-00004.
5
Effects of exercise training on coronary circulation: introduction.运动训练对冠状动脉循环的影响:引言。
Med Sci Sports Exerc. 1994 Oct;26(10):1226-9. doi: 10.1249/00005768-199410000-00008.

引用本文的文献

8
The Role and Potential Mechanisms of Rehabilitation Exercise Improving Cardiac Remodeling.康复运动改善心脏重构的作用及潜在机制。
J Cardiovasc Transl Res. 2024 Aug;17(4):923-934. doi: 10.1007/s12265-024-10498-7. Epub 2024 Apr 1.

本文引用的文献

3
Cardiovascular effects of exercise training: molecular mechanisms.运动训练对心血管的影响:分子机制
Circulation. 2010 Sep 21;122(12):1221-38. doi: 10.1161/CIRCULATIONAHA.110.939959.
10
Regulation of coronary blood flow during exercise.运动期间冠状动脉血流的调节。
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验