Suppr超能文献

位于结合口袋细胞外末端的保守天冬氨酸残基控制脑谷氨酸转运体中的阳离子相互作用。

A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters.

机构信息

Department of Biochemistry and Molecular Biology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel.

Department of Chemistry, Binghamton University, Binghamton, New York 13902.

出版信息

J Biol Chem. 2011 Dec 2;286(48):41381-41390. doi: 10.1074/jbc.M111.291021. Epub 2011 Oct 7.

Abstract

In the brain, transporters of the major excitatory neurotransmitter glutamate remove their substrate from the synaptic cleft to allow optimal glutamatergic neurotransmission. Their transport cycle consists of two sequential translocation steps, namely cotransport of glutamic acid with three Na(+) ions, followed by countertransport of K(+). Recent studies, based on several crystal structures of the archeal homologue Glt(Ph), indicate that glutamate translocation occurs by an elevator-like mechanism. The resolution of these structures was not sufficiently high to unambiguously identify the sites of Na(+) binding, but functional and computational studies suggest some candidate sites. In the Glt(Ph) structure, a conserved aspartate residue (Asp-390) is located adjacent to a conserved tyrosine residue, previously shown to be a molecular determinant of ion selectivity in the brain glutamate transporter GLT-1. In this study, we characterize mutants of Asp-440 of the neuronal transporter EAAC1, which is the counterpart of Asp-390 of Glt(Ph). Except for substitution by glutamate, this residue is functionally irreplaceable. Using biochemical and electrophysiological approaches, we conclude that although D440E is intrinsically capable of net flux, this mutant behaves as an exchanger under physiological conditions, due to increased and decreased apparent affinities for Na(+) and K(+), respectively. Our present and previous data are compatible with the idea that the conserved tyrosine and aspartate residues, located at the external end of the binding pocket, may serve as a transient or stable cation binding site in the glutamate transporters.

摘要

在大脑中,主要兴奋性神经递质谷氨酸的转运体将其底物从突触间隙中移除,以允许最佳的谷氨酸能神经传递。它们的转运循环由两个连续的转运步骤组成,即谷氨酸与三个 Na(+)离子的共转运,然后是 K(+)的反向转运。最近的研究基于几种古菌同源物 Glt(Ph)的晶体结构,表明谷氨酸转运是通过电梯样机制发生的。这些结构的分辨率不够高,无法明确识别 Na(+)结合的位点,但功能和计算研究提出了一些候选位点。在 Glt(Ph)结构中,一个保守的天冬氨酸残基(Asp-390)位于一个保守的酪氨酸残基旁边,该残基以前被证明是大脑谷氨酸转运体 GLT-1 离子选择性的分子决定因素。在这项研究中,我们对神经元转运体 EAAC1 的 Asp-440 突变体进行了表征,该残基是 Glt(Ph)中 Asp-390 的对应物。除了被谷氨酸取代外,该残基在功能上是不可替代的。使用生化和电生理方法,我们得出结论,尽管 D440E 本身具有净通量能力,但由于对 Na(+)和 K(+)的表观亲和力分别增加和降低,该突变体在生理条件下表现为交换体。我们目前和以前的数据与以下观点一致,即位于结合口袋外部末端的保守酪氨酸和天冬氨酸残基可能在谷氨酸转运体中作为瞬时或稳定的阳离子结合位点。

相似文献

2
The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14297-302. doi: 10.1073/pnas.0904625106. Epub 2009 Aug 11.
6
The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
J Neurochem. 2010 Jul;114(2):565-75. doi: 10.1111/j.1471-4159.2010.06796.x. Epub 2010 May 6.
7
Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity.
J Biol Chem. 2018 Sep 14;293(37):14200-14209. doi: 10.1074/jbc.RA118.003261. Epub 2018 Jul 19.
8
Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters.
J Biol Chem. 2012 Jun 8;287(24):20016-26. doi: 10.1074/jbc.M112.344077. Epub 2012 Apr 24.
10
A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter.
J Biol Chem. 2010 Jul 9;285(28):21241-8. doi: 10.1074/jbc.M109.087163. Epub 2010 Apr 27.

引用本文的文献

1
Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2.
Nat Commun. 2024 Aug 3;15(1):6570. doi: 10.1038/s41467-024-50888-8.
2
Symport and antiport mechanisms of human glutamate transporters.
Nat Commun. 2023 May 4;14(1):2579. doi: 10.1038/s41467-023-38120-5.
3
Mechanism and potential sites of potassium interaction with glutamate transporters.
J Gen Physiol. 2020 Oct 5;152(10). doi: 10.1085/jgp.202012577.
4
MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells.
Sci Rep. 2018 Mar 21;8(1):4969. doi: 10.1038/s41598-018-23300-x.
5
Analysis of the quality of crystallographic data and the limitations of structural models.
J Gen Physiol. 2017 Dec 4;149(12):1091-1103. doi: 10.1085/jgp.201711852. Epub 2017 Oct 31.
7
Molecular dynamics simulations of the mammalian glutamate transporter EAAT3.
PLoS One. 2014 Mar 18;9(3):e92089. doi: 10.1371/journal.pone.0092089. eCollection 2014.
8
Excitatory amino acid transporters: roles in glutamatergic neurotransmission.
Neurochem Int. 2014 Jul;73:172-80. doi: 10.1016/j.neuint.2013.12.008. Epub 2014 Jan 10.
9
SLC1 glutamate transporters.
Pflugers Arch. 2014 Jan;466(1):3-24. doi: 10.1007/s00424-013-1397-7. Epub 2013 Nov 19.
10
Novel dicarboxylate selectivity in an insect glutamate transporter homolog.
PLoS One. 2013 Aug 7;8(8):e70947. doi: 10.1371/journal.pone.0070947. eCollection 2013.

本文引用的文献

1
Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13912-7. doi: 10.1073/pnas.1006289107. Epub 2010 Jul 15.
2
The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
J Neurochem. 2010 Jul;114(2):565-75. doi: 10.1111/j.1471-4159.2010.06796.x. Epub 2010 May 6.
3
A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter.
J Biol Chem. 2010 Jul 9;285(28):21241-8. doi: 10.1074/jbc.M109.087163. Epub 2010 Apr 27.
4
Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101.
J Biol Chem. 2010 Jun 4;285(23):17725-33. doi: 10.1074/jbc.M110.121798. Epub 2010 Apr 8.
5
Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph).
Biochemistry. 2010 May 4;49(17):3511-3. doi: 10.1021/bi100430s.
6
Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats.
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20752-7. doi: 10.1073/pnas.0908570106. Epub 2009 Nov 19.
7
Transport mechanism of a bacterial homologue of glutamate transporters.
Nature. 2009 Dec 17;462(7275):880-5. doi: 10.1038/nature08616. Epub 2009 Nov 18.
8
The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14297-302. doi: 10.1073/pnas.0904625106. Epub 2009 Aug 11.
9
The role of cation binding in determining substrate selectivity of glutamate transporters.
J Biol Chem. 2009 Feb 13;284(7):4510-5. doi: 10.1074/jbc.M808495200. Epub 2008 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验