Gillette Andrew, Bajaj Chandrajit
Department of Mathematics, University of Texas at Austin.
Comput Aided Des. 2011 Oct 1;43(10):1213-1221. doi: 10.1016/j.cad.2011.06.017.
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.
混合有限元方法使用两个或更多变量来求解偏微分方程。离散外微积分理论解释了为什么与不同变量相关的自由度应存储在原始域网格和对偶域网格上,并使用离散霍奇星号在网格之间传递信息。我们通过分析和示例表明,离散霍奇星号的选择对于该方法的数值稳定性至关重要。此外,我们在对偶网格上定义了插值函数和离散霍奇星号,可用于创建以前未考虑的混合方法。详细研究了静磁学和达西流的示例。