Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
Mol Ecol. 2012 Mar;21(5):1048-59. doi: 10.1111/j.1365-294X.2011.05297.x. Epub 2011 Oct 10.
Microbial eukaryotes (nematodes, protists, fungi, etc., loosely referred to as meiofauna) are ubiquitous in marine sediments and probably play pivotal roles in maintaining ecosystem function. Although the deep-sea benthos represents one of the world's largest habitats, we lack a firm understanding of the biodiversity and community interactions amongst meiobenthic organisms in this ecosystem. Within this vast environment, key questions concerning the historical genetic structure of species remain a mystery, yet have profound implications for our understanding of global biodiversity and how we perceive and mitigate the impact of environmental change and anthropogenic disturbance. Using a metagenetic approach, we present an assessment of microbial eukaryote communities across depth (shallow water to abyssal) and ocean basins (deep-sea Pacific and Atlantic). Within the 12 sites examined, our results suggest that some taxa can maintain eurybathic ranges and cosmopolitan deep-sea distributions, but the majority of species appear to be regionally restricted. For Operationally Clustered Taxonomic Units (OCTUs) reporting wide distributions, there appears to be a taxonomic bias towards a small subset of taxa in most phyla; such bias may be driven by specific life history traits amongst these organisms. In addition, low genetic divergence between geographically disparate deep-sea sites suggests either a shorter coalescence time between deep-sea regions or slower rates of evolution across this vast oceanic ecosystem. While high-throughput studies allow for broad assessment of genetic patterns across microbial eukaryote communities, intragenomic variation in rRNA gene copies and the patchy coverage of reference databases currently present substantial challenges for robust taxonomic interpretations of eukaryotic data sets.
微生物真核生物(线虫、原生动物、真菌等,通常称为小型后生动物)广泛存在于海洋沉积物中,可能在维持生态系统功能方面发挥着关键作用。尽管深海海底是世界上最大的栖息地之一,但我们对该生态系统中小型后生动物生物多样性和群落相互作用的了解还不够深入。在这个广阔的环境中,有关物种历史遗传结构的关键问题仍然是一个谜,但对我们理解全球生物多样性以及如何看待和减轻环境变化和人为干扰的影响具有深远的意义。本研究采用宏基因组学方法,评估了深海太平洋和大西洋不同水深和海洋盆地的微生物真核生物群落。在研究的 12 个站位中,我们的研究结果表明,一些分类群可以维持广盐性范围和世界性深海分布,但大多数物种似乎具有区域性限制。对于报告广泛分布的操作分类单元(OCTUs),大多数门的大多数物种似乎存在分类偏向,即偏向少数特定的分类群;这种偏向可能是由这些生物的特定生活史特征驱动的。此外,地理上相距较远的深海站位之间的遗传差异较小,这表明深海区域的合并时间较短,或者整个广阔海洋生态系统的进化速度较慢。尽管高通量研究允许对微生物真核生物群落的遗传模式进行广泛评估,但 rRNA 基因拷贝的种内变异和参考数据库的不完整覆盖目前对真核生物数据集的分类解释提出了重大挑战。