Department of Materials Science and Engineering, Stanford University, California 94305, USA.
Nano Lett. 2012 Nov 14;12(11):5581-6. doi: 10.1021/nl302627c. Epub 2012 Oct 12.
Optical trapping using focused laser beams has emerged as a powerful tool in the biological and physical sciences. However, scaling this technique to nanosized objects remains challenging due to the diffraction limit of light and the high power levels required for nanoscale trapping. In this paper, we propose plasmonic coaxial apertures as low-power optical traps for nanosized specimens. The illumination of a coaxial aperture with a linearly polarized plane wave generates a dual optical trapping potential well. We theoretically show that this potential can stably trap dielectric particles smaller than 10 nm in diameter while keeping the trapping power level below 20 mW. By tapering the thickness of the coaxial dielectric channel, trapping can be extended to sub-2-nm particles. The proposed structures may enable optical trapping and manipulation of dielectric particles ranging from single proteins to small molecules with sizes previously inaccessible.
利用聚焦激光束进行光阱捕获已经成为生物和物理科学领域的一种强大工具。然而,由于光的衍射极限和纳米级捕获所需的高功率水平,将该技术扩展到纳米级物体仍然具有挑战性。在本文中,我们提出了等离子同轴孔径作为纳米级标本的低功率光阱。用线偏振平面波照射同轴孔径会产生双光阱势阱。我们从理论上表明,这种势阱可以稳定地捕获直径小于 10nm 的介电粒子,同时将捕获功率水平保持在 20mW 以下。通过逐渐减小同轴介电通道的厚度,可以将捕获扩展到亚 2nm 的粒子。所提出的结构可以实现对介电粒子的光学捕获和操纵,这些粒子的尺寸范围从单个蛋白质到以前无法达到的小分子。