Suppr超能文献

小鼠模型中乳腺癌脑转移瘤缺氧动态的体内生物发光成像

In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model.

作者信息

Saha Debabrata, Dunn Henry, Zhou Heling, Harada Hiroshi, Hiraoka Masahiro, Mason Ralph P, Zhao Dawen

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, USA.

出版信息

J Vis Exp. 2011 Oct 3(56):3175. doi: 10.3791/3175.

Abstract

It is well recognized that tumor hypoxia plays an important role in promoting malignant progression and affecting therapeutic response negatively. There is little knowledge about in situ, in vivo, tumor hypoxia during intracranial development of malignant brain tumors because of lack of efficient means to monitor it in these deep-seated orthotopic tumors. Bioluminescence imaging (BLI), based on the detection of light emitted by living cells expressing a luciferase gene, has been rapidly adopted for cancer research, in particular, to evaluate tumor growth or tumor size changes in response to treatment in preclinical animal studies. Moreover, by expressing a reporter gene under the control of a promoter sequence, the specific gene expression can be monitored non-invasively by BLI. Under hypoxic stress, signaling responses are mediated mainly via the hypoxia inducible factor-1α (HIF-1α) to drive transcription of various genes. Therefore, we have used a HIF-1α reporter construct, 5HRE-ODD-luc, stably transfected into human breast cancer MDA-MB231 cells (MDA-MB231/5HRE-ODD-luc). In vitro HIF-1α bioluminescence assay is performed by incubating the transfected cells in a hypoxic chamber (0.1% O₂) for 24 hr before BLI, while the cells in normoxia (21% O₂) serve as a control. Significantly higher photon flux observed for the cells under hypoxia suggests an increased HIF-1α binding to its promoter (HRE elements), as compared to those in normoxia. Cells are injected directly into the mouse brain to establish a breast cancer brain metastasis model. In vivo bioluminescence imaging of tumor hypoxia dynamics is initiated 2 wks after implantation and repeated once a week. BLI reveals increasing light signals from the brain as the tumor progresses, indicating increased intracranial tumor hypoxia. Histological and immunohistochemical studies are used to confirm the in vivo imaging results. Here, we will introduce approaches of in vitro HIF-1α bioluminescence assay, surgical establishment of a breast cancer brain metastasis in a nude mouse and application of in vivo bioluminescence imaging to monitor intracranial tumor hypoxia.

摘要

众所周知,肿瘤缺氧在促进恶性进展和对治疗反应产生负面影响方面起着重要作用。由于缺乏在这些深部原位肿瘤中监测肿瘤缺氧的有效手段,对于恶性脑肿瘤颅内发展过程中的原位、体内肿瘤缺氧情况了解甚少。基于检测表达荧光素酶基因的活细胞发出的光的生物发光成像(BLI)已迅速应用于癌症研究,特别是在临床前动物研究中评估肿瘤生长或肿瘤大小对治疗的反应。此外,通过在启动子序列控制下表达报告基因,可通过BLI非侵入性地监测特定基因表达。在缺氧应激下,信号反应主要通过缺氧诱导因子-1α(HIF-1α)介导,以驱动各种基因的转录。因此,我们使用了一种稳定转染入人乳腺癌MDA-MB231细胞(MDA-MB231/5HRE-ODD-luc)的HIF-1α报告基因构建体5HRE-ODD-luc。体外HIF-1α生物发光测定是在进行BLI之前,将转染细胞置于缺氧箱(0.1% O₂)中孵育24小时,而常氧(21% O₂)中的细胞作为对照。与常氧中的细胞相比,缺氧条件下的细胞观察到显著更高的光子通量,表明HIF-1α与其启动子(HRE元件)的结合增加。将细胞直接注射到小鼠脑内以建立乳腺癌脑转移模型。在植入后2周开始对肿瘤缺氧动态进行体内生物发光成像,并每周重复一次。BLI显示随着肿瘤进展,来自脑内的光信号增加,表明颅内肿瘤缺氧增加。组织学和免疫组织化学研究用于证实体内成像结果。在此,我们将介绍体外HIF-1α生物发光测定方法、裸鼠乳腺癌脑转移的手术建立方法以及应用体内生物发光成像监测颅内肿瘤缺氧的方法。

相似文献

4
A noninvasive approach for assessing tumor hypoxia in xenografts: developing a urinary marker for hypoxia.
Cancer Res. 2005 Jul 15;65(14):6151-8. doi: 10.1158/0008-5472.CAN-04-2602.
5
Non-invasive bioluminescence imaging of myoblast-mediated hypoxia-inducible factor-1 alpha gene transfer.
Mol Imaging Biol. 2011 Dec;13(6):1124-32. doi: 10.1007/s11307-011-0471-9.
6
Early growth response gene-1 and hypoxia-inducible factor-1α affect tumor metastasis via regulation of tissue factor.
Acta Oncol. 2013 May;52(4):842-51. doi: 10.3109/0284186X.2013.705890. Epub 2013 Feb 14.
9
Hypoxia-inducible factor-1 up-regulates the expression of Toll-like receptor 4 in pancreatic cancer cells under hypoxic conditions.
Pancreatology. 2012 Mar-Apr;12(2):170-8. doi: 10.1016/j.pan.2012.02.015. Epub 2012 Mar 2.

引用本文的文献

1
State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We?
J Mammary Gland Biol Neoplasia. 2024 Jul 16;29(1):14. doi: 10.1007/s10911-024-09567-z.
2
Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment.
Theranostics. 2023 May 29;13(10):3346-3367. doi: 10.7150/thno.84253. eCollection 2023.
3
Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances.
Cells. 2022 Feb 16;11(4):686. doi: 10.3390/cells11040686.
4
Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response.
Cancer Drug Resist. 2021;4(2):382-413. doi: 10.20517/cdr.2020.94. Epub 2021 Jun 19.
5
HIF1A signaling selectively supports proliferation of breast cancer in the brain.
Nat Commun. 2020 Dec 9;11(1):6311. doi: 10.1038/s41467-020-20144-w.
6
Blocking c-MET/ERBB1 Axis Prevents Brain Metastasis in ERBB2+ Breast Cancer.
Cancers (Basel). 2020 Oct 1;12(10):2838. doi: 10.3390/cancers12102838.
7
Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia.
Antioxidants (Basel). 2020 Jun 11;9(6):516. doi: 10.3390/antiox9060516.
9
Tracking Tumor Colonization in Xenograft Mouse Models Using Accelerator Mass Spectrometry.
Sci Rep. 2018 Oct 9;8(1):15013. doi: 10.1038/s41598-018-33368-0.
10
Advances in decoding breast cancer brain metastasis.
Cancer Metastasis Rev. 2016 Dec;35(4):677-684. doi: 10.1007/s10555-016-9638-9.

本文引用的文献

2
Multimodality imaging of hypoxia in preclinical settings.
Q J Nucl Med Mol Imaging. 2010 Jun;54(3):259-80.
3
In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer.
Cancer Res. 2010 May 15;70(10):3905-14. doi: 10.1158/0008-5472.CAN-09-3739. Epub 2010 May 4.
4
Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice.
PLoS One. 2009 Nov 30;4(11):e8051. doi: 10.1371/journal.pone.0008051.
5
Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks.
Clin Cancer Res. 2009 Oct 1;15(19):6148-57. doi: 10.1158/1078-0432.CCR-09-1039. Epub 2009 Sep 29.
6
Usefulness of HIF-1 imaging for determining optimal timing of combining bevacizumab and radiotherapy.
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):463-7. doi: 10.1016/j.ijrobp.2009.02.083.
7
High-throughput quantitative bioluminescence imaging for assessing tumor burden.
Methods Mol Biol. 2009;574:37-45. doi: 10.1007/978-1-60327-321-3_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验