Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800, Australia; Departments of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
Departments of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
J Biol Chem. 2011 Dec 9;286(49):42180-42187. doi: 10.1074/jbc.M111.298711. Epub 2011 Oct 11.
The ovine footrot pathogen, Dichelobacter nodosus, secretes three subtilisin-like proteases that play an important role in the pathogenesis of footrot through their ability to mediate tissue destruction. Virulent and benign strains of D. nodosus secrete the basic proteases BprV and BprB, respectively, with the catalytic domain of these enzymes having 96% sequence identity. At present, it is not known how sequence variation between these two putative virulence factors influences their respective biological activity. We have determined the high resolution crystal structures of BprV and BprB. These data reveal that that the S1 pocket of BprV is more hydrophobic but smaller than that of BprB. We show that BprV is more effective than BprB in degrading extracellular matrix components of the host tissue. Mutation of two residues around the S1 pocket of BprB to the equivalent residues in BprV dramatically enhanced its proteolytic activity against elastin substrates. Application of a novel approach for profiling substrate specificity, the Rapid Endopeptidase Profiling Library (REPLi) method, revealed that both enzymes prefer cleaving after hydrophobic residues (and in particular P1 leucine) but that BprV has more restricted primary substrate specificity than BprB. Furthermore, for P1 Leu-containing substrates we found that BprV is a significantly more efficient enzyme than BprB. Collectively, these data illuminate how subtle changes in D. nodosus proteases may significantly influence tissue destruction as part of the ovine footrot pathogenesis process.
绵羊腐蹄病病原体双芽巴贝斯虫分泌三种枯草溶菌素样蛋白酶,通过介导组织破坏在腐蹄病发病机制中发挥重要作用。毒力和良性双芽巴贝斯虫株分别分泌碱性蛋白酶 BprV 和 BprB,这些酶的催化结构域具有 96%的序列同一性。目前,尚不清楚这两个潜在的毒力因子之间的序列变异如何影响它们各自的生物学活性。我们已经确定了 BprV 和 BprB 的高分辨率晶体结构。这些数据表明,BprV 的 S1 口袋更疏水但比 BprB 的小。我们表明,BprV 比 BprB 更有效地降解宿主组织的细胞外基质成分。将 BprB 的 S1 口袋周围的两个残基突变为 BprV 中的等效残基,可极大地增强其对弹性蛋白底物的蛋白水解活性。应用一种新的研究底物特异性的方法,即快速内切酶谱分析文库(REPLi)方法,揭示了两种酶都更喜欢在疏水性残基(特别是 P1 亮氨酸)后切割,但 BprV 比 BprB 具有更严格的主要底物特异性。此外,对于含有 P1 亮氨酸的底物,我们发现 BprV 是比 BprB 更有效率的酶。总之,这些数据阐明了双芽巴贝斯虫蛋白酶的微小变化如何可能显著影响组织破坏,作为绵羊腐蹄病发病机制的一部分。