Kang Jeon Woong, Lue Niyom, Kong Chae-Ryon, Barman Ishan, Dingari Narahara C, Goldfless Stephen J, Niles Jacquin C, Dasari Ramachandra R, Feld Michael S
Biomed Opt Express. 2011 Sep 1;2(9):2484-92. doi: 10.1364/BOE.2.002484. Epub 2011 Aug 1.
We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed chemical information from the sample, while confocal reflectance and quantitative phase microscopy show detailed morphology. Combining these intrinsic contrast imaging modalities makes it possible to obtain quantitative morphological and chemical information without exogenous staining. For validation and characterization, we have used this multi-modal system to investigate healthy and diseased blood samples. We first show that the thickness of a healthy red blood cell (RBC) shows good correlation with its hemoglobin distribution. Further, in malaria infected RBCs, we successfully image the distribution of hemozoin (malaria pigment) inside the cell. Our observations lead us to propose morphological screening by QPM and subsequent chemical imaging by Raman for investigating blood disorders. This new approach allows monitoring cell development and cell-drug interactions with minimal perturbation of the biological system of interest.
我们开发了一种新型的多模态显微镜系统,该系统将共焦拉曼显微镜、共焦反射显微镜和定量相显微镜(QPM)整合到一个单一的成像实体中。共焦拉曼显微镜可提供来自样品的详细化学信息,而共焦反射显微镜和定量相显微镜则显示详细的形态。将这些固有对比度成像模式相结合,使得无需进行外源染色就能获得定量的形态和化学信息。为了进行验证和表征,我们使用这个多模态系统来研究健康和患病的血液样本。我们首先表明,健康红细胞(RBC)的厚度与其血红蛋白分布具有良好的相关性。此外,在感染疟疾的红细胞中,我们成功地对细胞内疟原虫色素(疟色素)的分布进行了成像。我们的观察结果促使我们提出通过QPM进行形态学筛选,随后通过拉曼进行化学成像,以研究血液疾病。这种新方法能够在对感兴趣的生物系统干扰最小的情况下监测细胞发育和细胞与药物的相互作用。